Neurodynamicist Walter Freeman on globalist vs. modularist approaches to EEG

Uncategorized

Walter Freeman (http://sulcus.berkeley.edu/) is very prominent within the neurodynamics  world, but is perhaps not as well known to the neurophenomenology and emobodied cognition communities as he should be. This is possibly because of the forebodingly technical nature of the physics concepts he employs. He told me at a conference some years ago that his views were very close to those of Francisco Varela, who himself was a dynamical systems neuroscientist. He is quite possibly the world’s foremost expert modeling cognitive neurodynamics with EEG. I am examining his work again as I am in the process of designing an EEG study.  Our Science Club in Austin has been wrestling with his paper “Metastability, Instability, and State Tranistions in Neocortex” (Freeman and Holmes, 2005) where he presents a “globalist” alternative to researchers who focus on “modules lighting up:”

“Humans observe and grasp complex events and situations by means of expectations that have the form of theories. A theory determines the techniques of observation, which in turn shape what is observed and
understood. The classic case in physics is the wave–particle duality, in which the choice of one or two slits determines the outcome of the observation. A similar situation holds for the classic debates among proponents of competing theories about neocortical dynamics: localization vs. mass action. In one view, cortex is a collection of modules like a piano keyboard, each with its structure, signal, and contribution to behavior. In the other view, the neocortex is a continuous sheet of neuropil in each cerebral hemisphere, which embeds specialized architectures that were induced by axon tips arriving from extracortical sources during embryological development. Cooperative domains of varying size emerge within each hemisphere during behavior that includes the specialized.

Observers of both kinds use electroencephalograms (EEGs) and units to test their models. Localizationists (e.g. Calvin, 1996; Houk, 2001; Llina´s & Ribary, 1993; Makeig et al., 2002; Singer & Gray, 1995) analogize the neocortex to a cocktail party with standing speakers; each
module gives a signal that, when activated like a voice in a room, by volume conduction occupies the whole head and overlaps other signals. On the assumption of stationarity, the signals can be separated by independent components analysis (ICA) of multichannel EEG recordings. Globalists (e.g. Amit, 1989; Basar, 1998; Freeman, 2000) analogize neocortex to a planetary surface, the storms of which are generated by intrinsic dynamics and modified by the structural features of the surface.

These analogies throw into sharp relief the contrasting assumptions and inferences on which the two theories are based. Further, they justify the different methods by which the EEGs are processed, so that after the processing the two forms of the postprocessed EEG data differ dramatically, each legitimately in support of the parent theory. This is
why any description of a brain theory should be prefaced by a review of the methods used to get the data that supports the theory

Raw EEG data must be preprocessed prior to measurement. Here six decisions are summarized that have to be made by localizationists and globalists before they acquire EEG data. The choices are diametrically opposed (Freeman, Burke, & Holmes, 2003; Freeman & Holmes, 2005).

(i) According to localizationists, specified behaviors require activation of selected cortical modules that give signals at specific stages of the behaviors and are otherwise silent. The background EEG is incompatible
with this expectation, so they adopt the theory established years ago by Bullock (1969) and Elul (1972) that background EEG is dendritic noise, which is so smoothed by volume conduction, particularly at the scalp, that it has no identifiable spatiotemporal structure. They use time ensemble averaging (TEA) to attenuate the noise in proportion to the square root of the number of repeated stimuli that activate the modules, and to extract the expected signals as event related
potentials (ERPs). Globalists view the background
activity as the necessary pre-condition for execution of the specified behavior. That activity is modified by conditioned stimuli in differing ways in various areas of neocortex. The induced modifications are not time-locked to triggering stimuli, so that TEA cannot be used. Instead, spatial ensemble averaging (SEA) is used to extract reference values for sets of
phase and amplitude values from multiple EEGs.

(ii) The sensor of choice for localization is the depth microelectrode, because the size of the tip determines the acuity of spatial resolution. For globalization the spatial resolution is determined by the interelectrode
distances, so the electrode face to minimize noise should be as large as possible without touching neighbor electrodes.

(iii) Both observers use as many electrodes as possible. Localizationists space their electrodes as far apart as possible to sample from as many modules as they can. Globalists space them closely to avoid spatial aliasing and undersampling of spatial patterns of cortical activity.

(iv) Localizationists sharpen the spatial focus of the signals by high-pass spatial filters such as the Laplacian to correct the smoothing by volume
conduction. Globalists use low-pass spatial filters to attenuate contributions that are unique to individual electrodes and enhance the sampling of synchronized field potential activity.

(v) Narrow band-pass filters are favored by localizationists on the premise that modular signals are likely to be bursts at definite frequencies such as 40 Hz. Globalists prefer broad-band filters in expectation that oscillatory signals in EEGs are aperiodic (chaotic).

(vi) Signal sources are localized to modules by fitting equivalent dipoles to the filtered data in order to solve the inverse problem. Global signals are not confined to specific anatomical sites; they are localized not in
the Euclidean space of the forebrain but in multidimensional N-space, where N is the number of available electrodes. These diametrically opposed choices in data processing lead to widely divergent EEG data, and the data lead to theories that are skew. The two theoretical positions are more complementary than conflicting”

Advertisements

History of the development of neurophenomenology pt.II-cognitivism, neurology, and psychology

cognitive science, Francisco Varela, medicine, neurophenomenology

(Part I is here, and part III is here)

In certain respects, development of the view that embodied experience is crucial to understanding the mind and brain reached a nadir in the period after World War II, at least within psychology. Behaviorism had redefined psychology as an “objective” science with no need to refer to consciousness or phenomenology.  There was continuation of phenomenological research from the German gestalt psychologists, but it was not until after World War II that clinically-oriented humanistic psychology explicitly articulated the need for more holistic, “person-centric” perspectives emphasizing existential concerns: the search for meaning, the experience of health and illness, emotions, and consciousness.

While many philosophers in Europe continued to develop phenomenology, Contintental philosophy was increasingly concerned with logical positivism, which emphasized that many traditional problems could be solved through formal logic, and those not approachable in this way were suspect.  Formal logic reached a apotheosis  of sorts with the advent of computers, a class of systems having internal memory storage and symbolic-logical operations, and with them came a number of seminal figures that transformed models of mind and brain. In particular,  Norbert Weiner‘s (1894-1964) meta-discipline of cybernetics, Claude Shannon‘s (1916-2001) information theory, Alan Turing‘s  (1912-1954) and John von Neumann‘s (1903-1957) canonical work on computation, Jean Piaget‘s (1896-1980) theories of the sequential process by which infants and small children learn language and perception in stages, all resulted in an explosion of new perspectives on cognition, language, memory, perception, problem-solving.  By the late 1950’s the overlapping field(s) of artificial intelligence (AI) and cognitive science got the attention of researchers in psychology, linguistics, philosophy of mind, neuroscience, anthropology, therapy, and organizational management. Herbert Simon (1916-2001) modeled human problem solving in the face of uncertain information, and co-developed what became known as general systems theory, and along with Allen Newell (1927-1992) developed automated theorem-provers and chess-playing programs. Noam Chomsky‘s investigation of the symbolic logical rules underlying grammar and syntax generated an attack on environment-produced behaviorist theories of language, the flaws of which dramatically came to a head in the North Texas Symposium on Language in 1959.

While the door to explaining psychological phenomena in terms of mental categories and concepts had been re-opened, these new models generally formulated explanations in terms of impersonal information-processing and rule-based symbolic-logical theories of non-conscious aspects of the mind. These new “cognitivists” had absorbed certain scruples from the behaviorists, and typically disdained concepts such as “consciousness” in their models of the mental processes. Cognitivism remained “system-centric”, not person or body-centered, and focused on reducing mental activity to computational,information-processing and representational processes. There was a general lack of interest in using various first-person, introspection-based methods such as those of William James, or Edmund Husserl, though cognitivism and behaviorism alike asked subjects for verbal reports within experiments.

However, clinical neurologists continued to advance an approach to psychological and cognitive phenomena that reflected a richer and broader understanding of the mind. The First and Second World Wars provided a huge pool of subjects with specific localized lesions and corresponding deficits in memory, speech, motion, etc.  The Russian neurologist Alexander  Luria (1902-1977)  spent about 30 years with a patient, the soldier Zazetsky, who sustained a bullet wound to his left occipito-parietal cortex.  Zazetsky’s struggle to use journal writing cope with being unable to remember new events is described in  The Man With a Shattered World (1972) as a fight “to live, not merely exist.” Zazetsky wrote: “I’m in a fog all the time…. All that flashes through my mind are images…hazy visions that suddenly appear and disappear.”

a7f3f96642a07af2db1e8110.L._AA240_

Taking the long view of the development of a science of the mind, the praxis-driven demands of the clinic balanced somewhat the behaviorist  and cognitivist disavowal of consciousness as a research topic. Focusing on the struggle of a brain-injured patient to live meaningfully meant that at least a small part of the ever-more fragmented field of psychology overtly or implicitly emphasized embodied and conscious aspects of cognition.  It should be emphasized that a division of labor was in effect. Clinicians deal with people, while cognitive scientists deal with systems. As neurologists and psychologists published case studies,  the more theoretically minded extrapolated from these reports to highlight an understanding  of human mental functioning that did not exclude consciousness and the existential, personal, meaningful dimensions of experience that are grounded in the lived body.

Across the ocean, in France, while structuralism began to dominate intellectual life after World War II, developments in phenomenological research continued apace. Most imprtantly was the philosopher Maurice Merleau-Ponty (1908-1961) analyzed and critqued the phenomenology of the philosopher/mathematician Edward Husserl. Foregoing Husserl’s hugely ambitious project of project of providing the most rigorous epistemological foundation possible for science and philosophy through investigations into experience, Merleau-Ponty attempted to reintegrate the penetrating Husserlian observation analysis of conscious phenomena into the structure of how consciousness is grounded and lived out bodily.

Phenomenologist Maurice Merleau-Ponty

Phenomenologist Maurice Merleau-Ponty

This change of emphasis allowed a bridge towards grasping how the lived body is related to the objectively-described physical body of physiology, behaviorism, and brain science. Works such as The Structure of Behavior and The Phenomenology of Perception are tantalizing hints that had Merleau-Ponty lived a long life, neurophenomenology might have emerged decades before the 1990’s. Merleau-Ponty articulated a post-Cartesian view of the mind that subverted the subject-object split. He used the notion of co-constitutionality to grapple with the enigmatic coupling and engagement of embodied mind to the world.  Two quotes from The Phenomenology of Perception are appropos (pg. 407):

Inside and outside are inseparable” (pg. 407)

Insofar as I have hands, feet; a body, I sustain around me intentions which are not dependent on my decisions and which affect my surroundings in a way that I do not choose” (pg. 440)

51OpeN9kQQL

Those psychiatrists and psychologists who attempted to apply the insights of Husserl, Martin Heidegger (1889-1976) and Merleau-Ponty especially developed what became known as phenomenological psychology. Heidegger gave lectures to physicians about ontology,while Ludwig Binswanger (1881-1966) and Medard Boss (1903-1990) attempted to apply his analysis of dasein (“being-there”) to clinical contexts. Phenomenological psychology showed a pronounced clinical influence from a key synthesizer of the neurological and phenomenological research traditions:  the neuropsychiatrist Erwin Straus (1891-1975, who was possibly the first neurophenomenologist.

Erwin Straus, MD: the first neurophenomenologist?

Erwin Straus, MD: the first neurophenomenologist?

He is quoted in Man, Time, and World: Two Contributions to Anthropological Psychology (1982) as stating:

The physiologist, who in the everyday world relates behavior and brain, actually makes three kinds of things into objects of his reflection: behavior, the brain as macroscopic formation, and the brain in its microscopic structure and biophysical processes. From the whole-the living organism-the inquiry descends to the parts: first of all to an organ-the brain-and finally to its histological elements. Statements concerning the elementary processes acquire their proper sense only in reference back to the original whole

Probably the best known exponent of a phenomenogical approach to clinical psychology and psychiatry was RD Laing (1927-1989), who in 1965 wrote a classic case-study analysis of the experience of schizoids in The Divided Self: an existential study in sanity and madness. In it he describes one patient:

“Julie’s self-being had become so fragmented that she could best be described as living a death-in-life existence in a state approaching chaotic nonentity.

In Julie’s case, the chaos and lack of being an identity were not complete. But in being with her one had for long periods that uncanny ‘praecox’ feeling described feeling’ described by the German clinicians, i.e. of being in the presence of another human being and yet feeling that there was no one there. Even when one felt that what was being said was an expression of someone, the fragment of a self behind the words or actions was not Julie. There might be someone addressing us, but in listening to a schizophrenic, it is very difficult to know ‘who’ is talking, and it is just as difficult to know ‘whom’ is addressing.”

In the 1970’s and early 1980’s, neurologists like Oliver Sacks continued in the neuropsychological tradition of Luria, and documented the  existential struggles of patients with brain disorders. In 1970  he produced an eminently readable,  phenomenologically rich classic of neuropsychology: The Man Who Mistook His Wife for a Hat.  He wrote persuasively that while there are indeed computer-like aspects of the brain, the cognitive, computationalist or information-processing model nonetheless does not address the full spectrum of human psychological reality (pg. 20):

But our mental processes, which constitute our being and life, are not just abstract and mechanical, but personal, as well.”

1834-1

The European-flavored, humanistic field of phenomenological psychology (also called existential-phenomenological psychology)  offers an alternative for researchers dissatisfied with mechanistic cognitivitism, behaviorism and physiological psychology. However, as far as I can tell,  after the passing of Erwin Straus, phenomenological psychology has had little or no interest in cognitive neuroscience. The major exception to this I can find was in 1981, when phenomenological/biophysiological psychologist Donald Moss and cognitive neuroscientist Karl Pribram each wrote fascinating essays on comparing brain science and phenomenology  in the collection The Metaphors of Consciousness (Valle and von Eckartsberg, Eds). This is of historical interest as an early instance of an explicit dialoug between neuroscience and existential-phenomenology.

92ebe03ae7a045d335c3d110.L._AA240_

Pribram’s essay “Behaviorism, Phenomenology, and Holism in Psychology” pointed to the need for a broader, phenomeologically and neurobiologically informed  approach to psychology (pg. 142:

“But there are limits to understanding achieved solely through the observation and experimental analysis of behavior. These limits are especially apparent when problems other than overt behavior are addressed, problems related to thought or to decisional processes, to appetive and other motivational mechanisms, to emotions and feelings, and even to images and perception”.

and (pg. 146):

“Existential-phenomenological psychology has not, up to now, been very clear in it’s methods. I suggest that multidimensional analyses (factor analysis, principle components analysis, stepwise discriminant analysis) might serve well as tools to investigate the structure of experience-in-the-world.”

Moss lucidly analyzed the similarities and divergences between neuroscience and existential-phenomenology  in a essay entitled “Phenomenology and Neuropsychology” (pg.159):

“Pribram points to the role of the brain processes in”constructing” the world as perceived. Yet existential-phenomenology has also emphasized the “constituting functions”of the ego (Husserl), the constituitive role of the lived body (Merleau-Ponty), and the role of the human body and upright posture in articulating the world of sensory experience (Straus). Thus, neither school of thought naively recognizes a reality per se unaffected by the presence and condition of the organism. ”

Such exchanges occurred on the margins of mind-science. By the 1960’s, the largely cold-war funded research program of Artificial Intelligence (A.I) and growing interest in cognitive or information-processing approaches to problems in psychology etc. had produced a “cognitive revolution”.  Some brave cognitivists even made use of introspective techniques (though not without drawing fire from behaviorists). Herbert Simon asked his subjects to verbally report on how they solved logic-puzzles, much to the chagrin of the remaining orthodox behaviorists. The renewal of mentalistic language and willingness to freely use data from introspection and verbal reports from subjects  about how they solved logic problems was a robust challenge to the behaviorists, but over time a rapprochement ensued.

But what really allowed the scientific study of consciousness and experience to re-emerge was the success of theoretical and laboratory neuroscience. EEG data had been produced for years with good temporal but limited spatial resolution, but in the 1970’s and 1980’s an alphabet soup of new imaging technologies (CAT, PET, MRI, and recently MEG) allowed neuroscientists to better “peek inside” the living brains of subjects in experiments. Progress in molecular biology, genomics, and biophysics in the postwar West allowed curious researchers to formulate models of emotions in chemical terms, such as the finding of endogenous opiates (or endorphins) and their receptors in the brain. The finding that nerve fibers connect with the organs of the immune system helped ground theories of the effect of emotions and beliefs on health, leading to the interdiscipline of psychoneuroimmunology. A growing industry to synthesize pharmaceutical products based on the molecular structure of receptor proteins has led to neuropharmacology and neuropsychopharmacology.

Some brain researchers looking for theoretical models of the mind found the information-processing/computationalist approach of the cognitivists limiting in understanding emotions and experience. Cognitive science itself had been rocked from its early (late 1950’s-early 1960’s) success to the gradual realization that many aspects of mind are not easily characterized as formal-logical, rule-based systems, as had been predicted by the phenomenologically-informed philosopher Hubert Dreyfus (1972) in What Computers Can’t Do, where he argued that rule-based, symbolic-logical, representationalist models of mind and language fail to deal with the radically embodied nature of cognition. This was hotly rejected by prominent AI researchers, but later influenced Terry Winograd, among others.

images1

Mostly the insights of clinical neurologists and phenomenological psychologists were ignored in postwar cognitive science, which had a great overlap with computer science and Artificial Intelligence (A.I). Indeed, cognitivists and AI engineers might profess agnosticism about the neurobiology of the mind, viewing  brain “hardware” as the domain of other specialists. In the late 1950’s and through the 1960’s, cognitive science and Artificial Intelligence seemed to have revolutionary new insights. AI as engineering of useful artifacts overlapped with AI as cognitive modeling. An early era of exciting optimism eventually gave way to slow progress on “general purpose” problem solving.  The limitations of their symbolic-logical, information-processing, and computationalist approach led others to develop the hybrid field of cognitive neuroscience. Sometimes there were interesting discrepancies between the two: onetime “pure” cognitivist Stephen Kosslyn performed neuroimaging experiments on subjects who were asked to rotate mental objects. According to John McCrone’s report of Kosslyn’s work in Going Inside: A Tour ‘Round a Single Moment of Consciousness, the resulting pattern of distributed activity across disparate brain regions was difficult to reconcile with the neat schematic Kosslyn had developed as an abstract cognitive model possessing a few modules for accomplishing aspects of the rotation operation. This lends credence to those who propose that cognitive science must be much more thoroughly integrated with the “gory details” of neuroscience, with the neural networks/connectionist camp serving as a conceptual bridge fro brain to symbols and representations. Over time, the lack of interest in biology and “implementation agnosticism” of some computationalist cognitive scientists has given way to modern cognitive neuroscience. A movement in the 1980’s to reform cognitive science and artificial intelligence along biologically-inspired and “subsymbolic” lines known as connectionism, artificial neural-networks, and parallel-distributed processing splits cogntivism to this day.

A pathbreaking  (and for some, puzzling*) book appeared in the second half of the 1980’s that seemd to point the way to a synthesis of neurobiology, cognitivism, computer science, and phenomenology: Understanding computers and cognition: a new foundation for design by AI and language-processing expert Terry Winograd and Fernando Flores:

9780201112979

The book proposed a phenomenologically-grounded understanding of how people in real-world environments use systems that software designers build. It took  inspiration from Humberto Maturana and Francisco Varela‘s  idea of autopoesis, a cybernetics-inspired, dynamical theory of organisms self-organizing  their own  structure by regenerating parts and by being coupled to their environment, until death.  The brains of creatures do not represent features (such  as colors) of objects external to them as cognitivists typically assume.  Rather, each ecologically-situated animal brings forth or co-constitutes a perceived world through evolutionarily-selected sensorimotor systems.  Autopoesis is a sort of post-Cartesian biology, and  Maturana and Varela described it in 1981 as:

“a network of processes of production (transformation and destruction) of components which: (i) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produced them; and (ii) constitute it (the machine) as a concrete unity in space in which they (the components) exist by specifying the topological domain of its realization as such a network.”

While a cognitivist might recognize a consonance with cybernetics here, abandoning representationalism is very difficult for some. What other bridging concepts are there to relate brain and mind events? This is still an open issue.

As it turned out, a sophisticated alternative to cognitivism was on the way: Walter Freeman, Francisco Varela, and others have offered a post-representationalist approach to consciousness, cognition, and the brain based in dynamical systems theory. The undercurrents of dissatisfaction with  understanding the mind as information-processing, rule-based symbolic  logical procedures, and “computations over representations”  emerged in the 1990’s  as embodied cognitive science and neurophenomenology.

(Part I is here, and part III is here)

*-when asked about Understanding Computers and Cognition, a doctoral student in psychology I knew could only shake his head, raise his eyebrows,  and say “that’s a weird book”

History of the development of neurophenomenology pt.3: the modern era

Uncategorized

(Part I is here, and part II is here)

There  are a small number of researchers in neuroscience, cognitive science, and philosophy, that have developed a body of work that is properly called neurophenomenology. The most recognizable and productive was the Chilean biologist and cognitive neuroscientist Francisco Varela (1946-2001), who is likely better known for co-developing the theory of autopoesis.  He was possibly the first neuroscience researcher since Erwin Straus to have found the very technical phenomenological methods developed by Husserl to be a valuable resource. Varela adopted as much of the Husserlian methdology as he saw fit, so as to make progress on the notoriously difficult problems  inherent to relating cognitive neuroscience data with first-person verbal reports. Varela’s  essay”The Specious Present: A Neurophenomenology of Time Consciousness” was in particular influenced by Husserlian methodology.

Collaborating with eminent categorization researcher Eleanor Rosch and the philosopher Evan Thompson, Varela in 1991 published The Embodied Mind: Cognitive Science and Human Experience. In my opinion this was the most important book on cognitive neuroscience of the 1990’s (Daniel Dennett would not agree, but has an interesting critique here where he refers to it as “a major contribution to our understanding of cognitive science”.) I believe The Embodied Mind effectively provides a foundation for neurophenomenology, and is the most important work in the field (though the term  did not appear in the volume).

image008

As far as I have been able to determine, the term neurophenomenology first appears in 1988 with anthropologist and “biogenetic structuralist” Charles Laughlin’s “The Prefrontosensorial Polarity Principle: Toward a Neurophenomenology of Intentionality“, in Biology Forum 81 (2): 243-260 (I cannot find the original article, but there are references to it). Likely many encountered the term in 1990’s  Brain, Symbol & Experience: Toward a neurophenomenology of human consciousness by Charles Laughlin, social psychologist John McManus, and psychiatrist Eugene d’Aquili.

be2c228348a0441b22737110-l-_aa240_1

This is a fascinating book of great ambition: to  model language and cultural systems of meaning through a non-reductive cognitive neuroscience. The section on existential-physiological discrepancy is worth the price of admission alone!  Laughlin was kind enough to give me his perspective on this fertile period: evidently Varela likely encountered the term through this book.  I for one was thrilled in1996 when Varela published “Neurophenomenology: A methodological remedy to the hard problem” in the Journal of Consciousness Studies.

Francisco Varela: biologist and neurophenomenologist

Varela made a presentation to the “Towards a Science of Consciousness” conference in Tucson in April 1996. Here he delivered an address later published as “A science of consciousness as if experience mattered”. In it he defines the field:

“The Working Hypothesis of Neurophenomenology

Only a balanced and disciplined account of both the external and experiential side of an issue can make us move closer to bridging the biological mind-experiential mind gap:

Phenomenological accounts of the structure of experience and their counterparts in cognitive science relate to each through reciprocal constraints.

<snip>

The key point here is that by emphasizing a codetermination of both accounts one can explore the bridges, challenges, insights, and contradications between them. Both domains of phenomena have equal status in demanding full attention and respect for their
specificity. It is quite easy to see how scientific accounts illuminate mental experience, but the reciprocal direction, from experience towards science, is what is typically ignored.

The study of experience is not a convenient stop on our way to a real explanation, but an active participant in its own right.”

At the time of this presentation, “consciousness studies” was enjoying something of a rennaissance, and while only a small pool of researchers were explicitly refering to neurophenomenology as such, notions of “embodied cognitive science”, “situated cognition”, “hot” (as in emotional) cognition, and “affective neuroscience” were circulating among much broader group.  At one time for a neuroscientist or even psychologist to admit they were researching consciousness would supposedly invite at least skepticism, but in the 1994  the famously hard-nosed reductionist and DNA researcher Francis Crick (1916-2004) worked on and advocated a neuroscientific approach to consciousness:

The_Astonishing_Hypothesis(Cover)

By advocating a cognitive neuroscience of consciousness, Crick helped to legitimize a field that had been controversial. and many computer scientists, neuroscientists, philosophers, biologists, psychologists, and even physicists became involved in a roiling, highly publicized series of debates and conferences on mind, brain, and consciousness.

One reads there  had been something of a stigma placed upon brain scientists who dared to try to model consciousness or “subjectivity”; now leading neuroscientists like Gerald Edelman and Antonio Damasio write best-sellers about consciousness and emotions. Damasio in particular is arguably the leading expositor of the view that embodied  emotions are a critical part of cognition, a perspective that has been long maintained by the phenomenological psychologists. He has developed the somatic marker hypothesis, which states that decision-making is affected by emotions,due to visceral signals coming from the body.

feelingofwhathappens

Damasio, perhaps the leading researcher in the world on consciousness, draws on the work of Varela, who died at a relatively young age in 2001. Without  this charismatic neuroscientist leading the effort, it is unclear what is next for neurophenomenology.  One possible, and serious, bifurcation point is present: the influential reductionist and cognitivist philosopher Daniel Dennett has made an important distinction between “upper case'” Husserlian Phenomenology andlower case” phenomenology, the far-less controversial latter endeavor being (in his formulation) amenable to cognitive neuroscience.

dennett-consciousness-explained-1e

Consciousness Explained is endlessly stimulating, eminently readable, funny, provocative, and most importantly provides a pragmatic account of how to move the cognitive science of consciousness forward methodologically via heterophenomenology This method may prove fruitful for neurophenomenology, but Consciousness Explained ultimately devotes it’s hundreds of fascinating pages to a defense of vanilla reductionistic computational/representational cognitivism.

200px-Daniel_Dennett_in_Venice_2006

Dennett: author of the pathbreaking 1991 volume Consciousness Explained

Consciousness Explained proposes that verbal reports generated by the introspection of a subject can be treated as data through the adoption of a “heterophenomenological” method, where no assumptions about the reality-status of the introspection or description are made (a .pdf from The Journal of Phenomenology and Cognitive Science outlining  a rather plausible  defense of the heterophenomenological method is here) The upshot is that cognitive neuroscience and psychology (now, at least) have no need of  trained “autophenomenologists” such as  Edmund Husserl or William James. It is enough to simply get regular untrained subjects to verbally report on what they believe they are experiencing or percieving or remembering, and these reports are nothing more than data about subjects’ beliefs about their mental states. Heterophenomenology is thus a sort of behaviorist-friendly phenomenology.

Heterophenomenology attempts to get around the problem of subjectivity: the reports are simply treated as data about the subject’s beliefs or “intentional stance”, which can then be used to correlate with neuroimaging or otherwise inform model-building in the cognitive neurosciences. But Dennett maintains that there can be no “first-person” science, where descriptions of experience from the researcher are fundamental, which is what Husserl, William James, and Varela espoused (read Dennett’s  crisp missive on the subject of “The Fantasy of First-Person Science” at http://ase.tufts.edu/cogstud/papers/chalmersdeb3dft.htm).

This distinction then opens up two broad possible paths for neurophenomenology: using a strictly “hetero” and third-personal methodology, or building on tradition of the “auto” and first-personal way (it should be made clear that this distinction is not only germane to neurophenomenology, but also to the broader field of consciousness studies and possibly cognitive neuroscience, psychology, and medicine).  However, both may be useful, depending on context and the particular research problem of interest.  The “hetero” method is more-or-less what psychologists and behavioral researchers have done for a century (the twist being how the data is to be regarded: not about reality so much as subjects’ beliefs about reality).

Varela was emphatic that phenomenology, done properly, is not introspection at all. Following Husserl, he asserted that what a disciplined, trained observer can observe and report about consciousness is vastly different than what a “civilian” can do.  The  neurophenomenological theory of Varela does not accept Dennett’s formulation that what he (Dennett) calls the “auto” tradition is not science. Rather, “mutual constraints” define how mind science uses the careful descriptions of trained observers or phenomenolgists relative to “objective” behavioral or cognitive neuroscience data.  If such training can yield reports with accurate characterizations of the structure of phenomenal awareness, or even the underlying underlying cognitive processes, autophenomenology will be valdiated.

Before his passing in 2001, Varela produced many writings on these methodological issues, as well as other topics on the neurophenomenology, which are now circulating in book form: The View from Within (with Jonathan Shear) and the multi-authored Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science.

Time will tell if Varela’s or Dennett’s visions of a science of consciousness prevail. While it is possible there will be a reaction against so much time and effort being devoted to these matters (as in the behaviorist disavowal of introspection used in German psychophysics research) 15 years after  the mid-1990’s “consciousness boom”, interest remains strong.

Some among the talented  researchers who worked with Varela are still active, among them Jean-Phillipe Lachaux, as well as Antoine Lutz , who describes his research thusly:

“I am interested in understanding the neural counterparts to subjective experience and, more generally, the mechanisms underlying mind-brain-body interactions. In the first part of my research, I am studying the role of large-scale neuronal integration (neural synchrony mechanisms) during various mental states (voluntary attention, emotion generation); The emphasis of my work is in the use of introspective, or first-person, data in order to understand the function of these large-scale dynamical processes”

Among philosophers doing neurophenomenological research, there is Shaun Gallagher, who wrote the excellent How the Body Shapes the Mind, and who is  the Editor-in-Chief of the journal Phenomenology and the Cognitive SciencesDavid Casacuberta has a neurophenomenology website at http://neurophenomenology.blogspot.com/.

It is worth noting that there are more academic papers and books about embodied cognition than ever. Neurophenomenology in the narrower sense is somewhat in a transitional phase after the death of Varela, and it remains to be seen whether the component sub-fields of clinical neurology, neuropsychology, experimental cognitive neuroscience, and philosophy will continue to produce an emergent field.  However, there have been a number of works which are to this author stimulating and likely fertile sources of new ideas. In particular, Antonio Damasio’s 2010 Self Comes to Mind: Constructing the Conscious Brain seems as if it will usher in a new era of productive research on embodied cognition.

Screen shot 2013-02-13 at 12.34.48 PM

This work focuses on the role of visceral dynamics in the body being mapped onto the brainstem, thalamus, insular and cingulated cortices, and other regions to generate a sort of representation of the homeostatic state of the body.

Evan Thompson has recently authored a wonderful, well written tome entitled Mind in Life. It refines and even critiques some of the arguments and perspectives from the 1980’s/early 1990’s era that produced The Embodied Mind:

Screen shot 2013-02-13 at 12.45.24 PM

This has garnered high praise from no less an authority than neurodynamicist Walter Freeman:

“There is no deeper prison of the modern mind than the Cartesian legacy that splits mind from life, and no more arduous climb to escape. Thompson provides a topo map–rich, multifaceted, superbly documented–by detailing the work of the many (but relatively few among contemporary scientists and philosophers) who recognize the impasse and strive to transcend it.”

Interest in neurophenomenology is on the rise. As of mid-2009, Google lists 24,000 results under the term “neurophenomenology” .  In early 2013, there are more than 34,000. As one who can remember that a browser search in 1996 produced about 3 results, a sense of excitement is likely appropriate. The knotty challenges involved in this sort of research are daunting, but more people than ever are looking at the problems. We are, perhaps, at the end of the beginning of the story of research into neurophenomenology.

Part II of Leder’s The Absent Body

Uncategorized

02264700082

Spatiotemporal Continuity

The mysterious quality of our visceral space is based not only on such experiences but on all that is not experienced of our inner body, I have hitherto focused on what interoceptions we do have; they are marked by a limited qualitative range and a spatial ambiguity that together restrict our perceptual discriminations. Furthermore, as I will now address, there is a paucity of even such limited experiences.

Exteroception, at least during the waking state, manifests a certain spatiotemporal continuity. My eyes scan a visual world that is without sudden gaps or crevices. If I abandon one sense, perhaps closing my eyes, the other senses help to maintain the continuity of world. Similar­ly, proprioception traces out a completed sense of my surface body, allowing me to adjust every limb, every muscle, in appropriate motoric response to tasks. Though usually this sense is subliminal, I can close my eyes and proprioceptively hone in on the position, the level of tension or relaxation, in any region of the muscular body.

By way of contrast, the stream of interoceptive experience is marked by ineluctable discontinuities. In the above example, after eating the ap­ple it largely disappeared from perception only to resurface in an exper­ience of heartburn. This then faded away to silence, broken some time later by insistent cramps. This too passed. Finally, hours later I become aware of sensations from a new region signaling the need to defecate. But these are intermittent punctuations in a shroud of absence. Most of the intricate digestive process—its enzymatic secretions and peristaltic waves, its diffusions and active transports—proceeds without the pos­sibility of conscious apprehension. This is equally true of circulation, respiration, thermal or fluid regulation. By far the greatest part of my vegetative processes lies submerged in impenetrable silence.

Causal relations are rendered uncertain by these spatiotemporal lac­unae. I cannot be sure if my cramps are caused by an apple I previously ate, for this apple has, in the interim, disappeared from experience. Mo­ments of discomfort are noted while the baseline of ordinary functioning is largely invisible, it is as if my eyes only reacted to flashes of blind­ing light, the rest of the time residing in darkness.

This darkness is never absolute. When I focus inward at even the qui­eter times I still find some vestigial sense of my midsection enveloped in a sort of sensory neutrality, neither full nor empty, pleasured nor in pain. And this vague aura is not devoid of meaning. It shows that any hunger or illness has subsided. The very absence of discomfort is tinged by a positivity.

Moreover, through a heightened focusing of attention, I can increase my awareness of visceral processes. Certain dim sensations that I had never noticed—the feeling of my pulsing blood, the depths of respira­tion, the subtler reactions of my stomach to different foods—can be brought into experience by conscious effort. As cultural variations show, a certain degree of visceral disappearance can be attributed to Western insensitivities and overcome by a systematic development of powers. The awareness of and control over the inner body exhibited by trained yogis has far surpassed what used to be thought possible in the West.

Yet even such achievements take place only within an overall context of experiential disappearance. The very need for highly specialized training is evidence of the perceptual reticence of our viscera as com­pared to the body surface. And just as it is possible to speak of null points in relation to the surface body, the corporeal depths have their own phenomenological null points. That is, there are visceral regions that are almost entirely insensitive. In focusing upon stomach and gut I have ac­tually chosen two of the more loquacious organs. The kidney, gallblad­der. bone marrow, spleen, yield far less interoceptively. The par­enchyma of the liver, the alveolar tissue of the lung, are virtually with­out sensation. Unlike the completed perception of the proprioceptive body, our inner body is marked by regional gaps, organs that although crucial for sustaining life, cannot he somesthetically perceived.

We rarely thematize this sort of disappearance. Upon introspecting, I do not feel an emptiness in my body where my liver should be. This would make the absence into a presence-as-concealed hovering before my awareness. Rather, the absence of the liver parenchyma is so total that few would ever come to realize or remark upon it. Yet a medical mishap can suddenly awaken us to the significance of such bodily lac­unae. The vast gaps in our inner perception may conceal potentially damaging processes until they are far advanced. For example, while I may feel pain once damage to the liver has progressed to the point of affecting its membranous capsule, the initial process can go unper­ceived. Similarly, hypertension is experientially hidden through much of its career. As with my surface body, I can bring to bear upon these depth organs certain strategies of reflective observation. A blood sample can tell me a good deal about my liver function. Through a sphygmomanometer I can read off my blood pressure. I can look at an X ray of my lungs. I can even gaze through a colonoscope at the lumen and folds of my own colon. Such techniques enable me to gain knowledge concerning my viscera. Yet, as with my surface body, the absences that haunt my bodily depths are not effaced by these reflective maneuvers. Though I can visu­ally observe my colon, its processes still elude experience from within, The magical power my body has to absorb water and electrolytes is not perceived as I gaze through the endoscope upon this furrowed, tubular space. The mystery of my body is only heightened by the very strange­ness of the organ before me, its phenomenological noncoincidence with my body-as-lived.

Moreover, unlike the body surface, my inner organs tend to resist even these partial reflections. My viscera are ordinarily hidden away from the gaze by their location in the bodily depths, there is aspect of withdrawal may seem contingent, resulting from a sheerly physical harrier rather than an existential principle. Ye t this is to draw a false distinction; in the lived body, the physical and existential always intertwine.

The depth location of the viscera is no more contingent than the sur­face placement of the sensorimotor organs. Eye and hand could not perform their perceptual role unless they opened onto the external world- Thus, in order to perceive they must take their place among the perceptibles. They must be located at the body surface available to the gaze of myself and others, By way of contrast, my visceral organs, not constructed for ecstatic perception, disappear from the ranks of the per­ceived, I do not perceive from these organs; hence, they can hide beneath the body surface such that I do not perceive to them either. In fact, they require this seclusion just as the sensorimotor body requires exposure. My stomach, neither an organ of exteroception nor voluntary move­ment, could not screen the environment, secure appropriate foods, repel threats. It depends on a mediating surface, active and intelligent, to stand between it and the world, selecting what is needed for metabolic maintenance and protecting the vise us from hostile impacts. The hiddenness of vital organs, though frustrating at limes of disease, is essen­tial to healthy functioning.

Thus it is quite rare for the viscera to be exposed in life. This can happen, as in surgery, wartime injury, or violent accidents, yet these are pathological and dangerous occasions, Most commonly, the direct ex­posure of the inner organs implies or threatens the death of the person, Hence, as Foucault notes in The Birth of the Clinic, when nineteenth-century medicine made the direct perception of diseased organs an epistemological goal, the corpse, not the live patient, became the paradigmatic figure of truth. For the “anatomo-clinical” gaze, “that which hides and envelops, the curtain of night over truth, is, paradox­ically, life; and death, on the contrary, opens up to the light of day the black coffer of the body.”” While Foucault addresses this as a historical devel­opment, it manifests my phenomenological point; life itself is allied to a certain concealment, a withdrawal and protection of its vital center.

Excerpt from Drew Leder’s The Absent Body pt. 1

Uncategorized

Drew Leder is a physician and philosopher. His  1990 book The Absent Body is a tour-de-force!

0226470008

“According to a scheme employed in physiology, the body’s sensory powers can be divided into three categories. Interoception refers to all sensations of the viscera, that is, the internal organs of the body. It is usually distinguished both from exteroception, our five senses open to the external world, and proprioception, our sense of balance, position, and muscular tension, provided by receptors in muscles, join is, tendons, a ltd the inner ear. In this section I will describe three essential features that structure the interoceptive field; I will term these features respec­tively qualitative reduction, spatial ambiguity, and spatiotemporal disconti­nuity.

Qualitative reduction

Ordinarily that which enters the interoceptive field is simultaneously lost to the exteroceptive. Before swallowing the apple I can see, touch, smell, and taste it in all its crimson-tart vividness. Once swallowed, these possibilities are swallowed up as well I can occasion ally; and per­haps unpleasantly, bear or smell evidence of my digestive activity. As in the above example, I can even catch a taste via esophageal reflux. Yet aside from such intermittent and muted evidences, the incorporation of an object into the visceral space involves its withdrawal from exterocep­tive experience.

The perceptual field into which the object is received is limited com­pared to that of the surface body. Interoception does not share the multidimensionality of exteroception, the latter utilizes five sense-modalities which, though tightly interwoven in everyday praxis, have radically divergent spatiotemporal and qualitative properties. Interocep­tion is not devoid of an expressive range and utilizes, physiologists tell us, a variety of sense-receptor types, including mechanoreceptors, nociceptors, and even some thermoreceptors. Yet these are experienced as modulating a single dimension of perception, i.e., “inner sensation” rather  than opening onto distinct perceptual worlds.

Furthermore, the qualitative range of this dimension is reduced even when compared to any single exteroceptive mode. Touch, the most analogous form of surface perception, includes within it a huge variety of sensory statements. My acutely articulate skin yields a panoply of tickles, itches, pains, sensations of light and deep pressure, warmth and cold, slow and fast vibrations. The interoceptive vocabulary is not as well developed. In the above example, the stomach and intestines yield a feeling of fullness and cramping. The esophagus burns with an acid reflux. Yet this comes close to exhausting the ordinary sensory experi­ences of this region. In physiological terms, the viscera have a greatly decreased number and variety of sensory receptors compared to the Sur­face body, as well as a limited repertoire of motor responses. Experien­tially, one notices a certain crudeness and generality to most of the mes­sages received. This is a common problem for diagnosing physicians.

An experience of “tightness” in the chest could signal any of a number of cardiac, respiratory, muscular, or even alimentary difficulties, given the imprecision of interoception.

The limited interoceptive vocabulary largely centers around sensa­tions that are affectively charged. Through my outer-directed senses I can survey the exteroceptive field without immediate emotional re­sponse. The separation between the perceiver and the perceived makes possible a dispassionate scan. By contrast, visceral sensations grip me from within, often exerting an emotional insistence. As the example suggests, it is the discomforting or painful sensations that speak up most clearly: the crampy stomach, the heartburn, the insistent need for defe­cation. Like the infant who cries in displeasure but lapses into content­ment silently, the viscera seem most able and most articulate in relation to dysfunction (see chapter 3 below). The biological/existential signifi­cance of this is clear. It is at times of dysfunction that an insistent and aversive call is needed to compel reparatory action.

While my interoceptive vocabulary is thus most developed in relation to pain, it is limited even here when compared to the body surface. My skin is susceptible to the most exquisite and differentiated tortures if it is cut, burned, pricked, tickled, stretched, struck, pinched. The inner organs exhibit comparatively restricted modes of discomfort. A particu­lar viscus often has its stereotyped ways of responding to almost any noxious stimuli; stomach cramps can result from stress, infection, and food poisoning alike. Moreover, the same general sort of pain, often de­scribed as a diffuse aching or burning, is shared in common by many different viscera.

Spatial Ambiguity

Interoception is reduced compared to surface perception not only in its qualitative range but in its spatial precision. Vision, audition, and touch allow me to locate stimuli to a fine degree. My fingers can tell apart pinpricks separated by only one to two millimeters. While other regions of the surface are less discriminating, I usually have little difficulty in locating cutaneous sensations. By way of contrast, visceral sensations are often vaguely situated with indistinct borders. In my example, I experi­ence midsection fullness and cramps, but there is no clear place where they begin or end, and no precise center.

Pain can suddenly localize when the sensitive membranes lining the visceral cavities become involved. But the inner organs themselves are in many instances simply incapable of registering localized events. Sur­geons, for example, have found that they can cut the intestines in two without a conscious patient experiencing significant pain. Like other viscera, the intestines primarily report generalized stimulations involv­ing substantial portions of the organ.

The spatial ambiguity of the visceral depths is accentuated by the phenomenon of referred pain. A process taking place in one organ tan exponentially radiate to adjacent body areas or express itself in a distant location. Hence the pain of a heart attack may originate in the chest area but quickly spread down the left arm. This reflects embryological ori­gins; sensation is referred to that level of the body the viscus occupied in the developing fetus before it descended, dragging nerves along, to its mature position. Thus, I may experience the pain where the organ used to be, not simply where it is now. An almost magical transfer of experi­ence is effected along both spatial and temporal dimensions, weaving the inner body into an ambiguous space.

Moreover, there are physical/phenomenal transfers between any vi­tal organ and the body as a whole that further prohibit strict localization of visceral experience. Ricoeur refers to “this strange mixture of the lo­cal and the non-local” that is encountered in phenomena such as pain, hunger, thirst, and all vital needs,’ As the example indicates, hunger is experienced not just in abdominal ache but as heaviness in the limbs, a yearning in the mouth. The visceral organs sustain my body as a whole through processes of digestion, circulation, respiration, and excretion. Hence, when I manifest a visceral-based contentment or dysfunction, this is manifested everywhere and nowhere.  A twinge in the finger is clearly located there. But hunger is a complex nexus of heaviness, ex­haustion, conative urges, and discomforting sensations that, while gath­ering into nodes of crystallization, ambiguously inhabits the entirety of the corporeal field.

How accurate are people at knowing what is happening inside their bodies?

cognitive science, embodiment, interoception, introspection, neurophenomenology, symptom reports, visceral perception

Were people utterly inaccurate at judging their body state and reporting on it, clinical medicine would be deprived of a critical tool.  Evidence has accumulated that in certain circumstances, some people are evidently able to access information about the physiological processes inside of their bodies, and to report on it.  Experiments seem to demonstrate that some people are relatively accurate perceivers of symptoms or physiological state (Jones and Hollandsworth, 1981), (Adam, 1998), and that subjects can be ranked into good or poor estimators of internal state; for instance, with perceivers of heart rate (Schandry, 1981).

When we are actually aware of specific processes inside our bodies and can state this verbally, it would seem that in some fashion unconscious information (or unconscious “information”) has generated or has been transformed into knowledge. However, there is contradictory evidence about accuracy of symptom perception: how good people really are at perceiving various physiological states, and how accurate symptom-reports or other verbal-reports actually are. Many studies have yielded data consistent with the idea that people are not particularly good at accurately reporting on their symptoms or physiological states (Pennebaker, 1982). It is worth pointing out the assertion that people are generally inaccurate about knowing about physiological processes in their bodies reformulates the principle that humans lack epistemological privilege concerning introspective or verbally reported data. In considering the question: are we are likely to be in error when we report on the contents of what is in our minds, or not, it is critical to appreciate the persuasive interpretation of experiments written up in papers such as “Telling More than We Can Know” by the psychologists Robert Nisbett and Timothy Wilson (1977), which seems to show how introspection-based retroactive judgments can are in error.  This category of research typically features subjects placed in circumstances where their choices are influenced by variables controlled by experimenters, and who give explanations for their choosing that display incorrect “folk psychological” constructions. Nisbett and Wilson’s analysis can properly interpreted as to cast doubt on the ability of people to know the causes of our behavior and “higher order” information-processing, and can be summed up with their statement that people may possess “little ability to report accurately on their cognitive processes” (p. 246).

However, I assert that this valuable critique of retrospective judgments has been improperly extrapolated to support a broad skepticism about introspection, what I shall call the “received view” or the “overly skeptical view”, which I might sum-up as the belief that introspective data should generally be regarded with skepticism. As has been noted by careful researchers on introspection, (Schwitzgebel, 2006), this more general rejection of introspection certainly goes beyond what Nisbett and Wilson argued: while they do indeed assert that the evidence of numerous studies shows people are poor at using verbal report-based introspection to the cognitive process behind our judging and deciding, they do not support a general disdain for introspective data. Rather, they state that instead of arguing that introspective reports should simply be discredited, while people do not have introspective access to the cognitive processes, they do have such access to the contents of their cognitions. For instance, Nisbett and Wilson (pg. 255) state that introspection can yield forms of knowledge: knowledge about cognitive content, as an everyday person:

“…knows what his current sensations are and what almost all psychologists and philosophers would assert to be “knowledge” at least quantitatively superior to that of observers concerning his emotions, evaluations, and plans”

Furthermore, the “received view” that introspective reports are to be generally regarded with suspicion is in tension with the clinical use of patient introspection, as well as the high accuracy ratings sometimes displayed in experiments where subjects are asked to evaluate their own physiology. Therefore, while showing appropriate regard for data suggesting limits on introspective access to cognitive information (indeed I will suggest that models of body-knowledge should account for this data), I will nonetheless highlight certain clinical and experimental data that support the following assertion, which  contradicts the view that introspective data should be generally regarded with skepticism:

There exist cognitive processes that allow people to access internal body-state or physiological information in a way that enables fairly, or even highly, accurate verbal reports.  Insofar as this is true, people evidently have some degree of epistemologically privileged access to internal body state or interoceptive information. This relative privilege allows for knowledge of the body, as distinct from mere beliefs.

However, if this is true, some accounting of to what degree or how true it is, with which mitigating conditions, and with what reference to underlying cognitive and neurophysiological mechanisms would be necessary.  For that matter, even if true, demarcating the explanatory power of this principle relative to data adequately explained by the “received view” or “overly skeptical view” is of critical importance. It may be that only special or rare abilities are at issue here, and that the people who have privileged access to their internal physiological information are outliers.

Body-knowledge: what is it?

embodiment, Francisco Varela, interoception, Uncategorized, visceral perception

I use the term“body-knowledge”  in my dissertation research primarily to refer to the experience of knowing about one’s own body, and especially embracing perception and assessments of the body through the body.  It is meant to straddle the classic cognitive psychology distinction between explicit knowledge that is verbalizable, and implicit knowledge that may only be revealed through experiments. Trying to define the term brings up a number of questions:

-How is “neurophysiological information-processing” related to “body- knowledge”?

-To what extent does the distinction between conscious and unconscious knowledge need to be invoked to explain that relationship?

-Should beliefs about the body be understood as part of body knowledge? What about attitudes, expectations, and desires concerning one’s body?

-Do the properties of the body vis-à-vis external objects and the external environment factor in, such as my knowledge of my ability to lift x kilograms of weights, or to effect changes in the world with my body?

-How is body-knowledge related to body-state information access?

This latter phrase can be thought of as “internal perception of information about the body”. For present purposes a heuristic understanding probably should suffice: body-state information access refers to what content an individual can perceive, sense, or detect about their body, but also to putative notions of information-processing in the afferent or other nerves that produce the content. As the term “cognition” signifies both mind as a collection of unconscious systems and (however problematically) mind as consciously experienced, body-state information access, as I use the phrase, straddles the divide between subjective and objective aspects of the body (compare to Merleau-Ponty’s (1968) notion of the “corporeal” or “the flesh”). One might extend the concept to mean that body-state information access also refers to a sort of “information gain” in bodily perception: for instance, being aware of digestive processes where one was not previously.

Interoception is another term needing examination: while classically interoception refers to perception of the visceral organs in the inside of the body, consider Bud Craig’s (2002) proposed redefinition (pg.655):

“Interoception should be redefined as the sense of the physiological condition of the whole body (including pain and temperature), and not just of the viscera”

Even if this broader sense becomes accepted, interoception will still include the sense of “interior perception”.  The more expansive signification should then overlap with somatic cognition, a term deployed by neuroscientists (Tanosaki, Suzuki, and Kimura, 2002) who use it to signify perception using body parts such as fingers, and also internal cognition, or even visceral cognition, labels used by researchers who model the relationship of the internal organs to the nervous system and perception (Adam, 1998, pg 156-159).

Compare these to body cognition, which might not only embrace the idea of knowledge of one’s lived, experienced body, “thinking with the body,” but also the somatic, visceral,  neurophysiological, and cognitive systems making the perception and knowledge possible. “Body cognition” would seem to have experiential or phenomenological (that is, felt) dimensions, but should also refer to what are commonly understood to be unconscious mental, neural, and other physiological processes enabling this knowing. The profusion of terms may reflect the inherent complexity of the systems involved, our partial and provisional understanding, or both. Analyzing how the notion of information relates to models that explain how unconscious neurophysiological processes give rise to conscious ones is a particular focus of my project.

As I will be use the term, body-knowledge embraces the notion of using the body as the means to perceive or assess itself, such as with symptom perception. The study of body cognition involves perspectives from many fields, but could be understood as a subset of embodied cognitive science, which differs from standard approaches to the extent that it emphasizes overcoming the Cartesian split between subject and object implicit in cognitive science, and the coupling of human mental activity to a meaningful world. One of the goals of a cognitive science of embodiment would be to construct a model of body knowledge good enough to explain how the embodied brain and mind make knowledge of the body, sensing or perceiving using the body, and the ability of people to use directed attention and introspection to gain “true information” or validated knowledge (compare to beliefs) about the body.

As I use the terms, body-knowledge and body-state information access refer to both experiential-phenomenological knowledge (“I feel hungry” or “I have an itch on my scalp, but not as bad as earlier”) that may form the basis of verbal reports as well as the unconscious, and presumably not explicitly stateable, underlying information processes comprising cognition. This distinction between stable and explicit and non-stateable or implicit knowledge is not a trivial one. Cognitive science, neuroscience, and psychophysiology propose that our conscious awareness and experience of information about the body to be to be somehow made of or caused by unconscious information, because cognitive processes are understood to be mostly unconscious.  Varela, Thompson, and Rosch (1991, pg. 49) point out that cognitive science:

“…postulates processes that are mental but that cannot be brought into consciousness at all. Thus we are not simply unaware of the rules that govern the generation of mental images or of the rules that govern visual processing; we could not be aware of these rules. Indeed, it is typically noted that if such cognitive processes could be made conscious, then they could not be fast and automatic and so could not function properly”

A critical look at the information-processing theories used to explain body-knowledge

Uncategorized

The psychologist Raymond Gibbs (2006) in Embodiment and Cognitive Science asks (pg. 28) “What underlies people’s abilities to move as they do and have any awareness of their bodies?”

images

The conventional answer given by psychology, medicine, and cognitive neuroscience is physiological and cognitive systems using information-processing. Gibbs cites the work of Bermudez, Marcel, and Eilan (1995) who list a series of multiple internal physiological information sources that enable motor activity and somatic perception (pg. 13):

“(a) Information about pressure, temperature, and friction from receptors on the skin and beneath the surface.

(b) Information about the relative state of body signals from receptors in the joints, some sensitive to static position, some to dynamic information.

(c) Information about balance and posture from the vestibular system in the inner ear and the head/trunk dispositional system and information from pressure on any parts of the body that might be in contact with gravity-resisting surfaces.

(d) Information from skin stretch and bodily disposition and volume.

(e) Information from receptors in the internal organs about nutritional and other states relevant to homeostasis and well-being.

(f) Information about effort and muscular fatigue from muscles.

(g) Information about general fatigue from cerebral systems sensitive to blood composition”

These formulations follow the contemporary scientific trend of explaining systems, processes, entities, and relationships in terms of computation and information (and, often enough, representation).  It is relatively rare in such contexts to encounter authors worrying overmuch about the meaning of the term “information” though there are attempts to effectively operationally define it via metrics, i.e. to quantify the information content of a system via Shannon-style or other measurements (Gardner, 1985). Perhaps “information” is indispensable as a term of convenience, but a critical reader should ask what the term means in context, when the term is used as a heuristic, what value the term adds, whether ambiguity is lessened or increased, and whether it would be better to emphasize the provisionality of information concepts.

Probably it would be better to refer to “information” much of the time, but this becomes stylistically cumbersome very quickly.

In any event, current theories of psychophysiological processing, clinical studies of symptom-perception accuracy, cognitive models using mechanisms explaining explicit, verbally-stateable knowledge, and other theories conceptualize our knowledge of our bodies in terms of information-processing, though the connection between “knowledge” and “information” is often not explicit.

How are we to understand the meaning(s) of the term “information” used to explain how and how well people know their own mental and physiological states? What is the relationship of “information” in the sense of physiological or biological systems to consciously reportable sensation, such that a person is getting information about their body state? Are there many kinds of “information” involved in these models of internal state perception or “body cognition” found in clinical neurology, medicine, experimental psychology, and theoretical cognitive neuroscience? Or is there but one type of “information”, with different qualities or aspects that are described or measured in different ways? What metrics or formalisms are most appropriate for each type?

Information-processing, computational, cognitivist, and representational formulations may privilege objective “system-centric” meaning of information, performing an implicit reduction of information in an experiential/phenomenological sense, without calling attention to the reduction. It may be useful, or even true, that quantities can be mapped on to qualities, following the accepted principle in philosophy of science that the ontology (known elements, entities, processes, features, properties and their relations) from one domain can be reduced to that of another domain, with properties from the one domain or level of scientific description to more fundamental explanatory ones in another domain (Churchland, 1989). In this view, the mechanistic and reductionistic work that the ontology of genes and DNA (and possibly information-processing theory) does in explaining cell biology will hold for the relationship between brain and cognition. Indeed, a standard view in psychology and neuroscience (and to an extent philosophy of mind) holds that concepts from cognitive neuroscience, computer science, and information-processing theory can mechanistically explain particular aspects of bodily awareness, and at some point law like or nomological generalizations will become apparent, effectively performing a reduction.

I maintain that we should be careful in using an overdetermined term such as “information” to prematurely unite concepts from different domains. Traditionally, the philosophy of science has had a role in calling attention to instances where the use of concepts from one domain are used to explain another without careful explication of the move that is made (what one might call “stealing a base”), but unfortunately, the specialized nomenclature of philosophy leaves some scientists and clinicians alienated from such discourse.

Stretch your imagination, take the long view, remember Thomas Kuhn: do you think people in 100 years will be explaining body-knowledge as an information-processing system?

History of the development of neurophenomenology-pt.1

introspection, medicine, neurophenomenology

(Part II is here, and Part III is here)

I will attempt in three essays to outline the sweep of ideas, researchers, and works that lead a few of us to speak of “neurophenomenology” as a more or less distinct field.  Part I traces 19th century psychology, neurology, and phenomenology roughly up to World War II. Part II examines the impact of cognitivism, the continued development of clinical neurology and basic neuroscience, the progression of phenomenological thought in psychology and medicine, and criticisms of cognitive science. Part III explores the early 1990’s origins of the emerging field of neurophenomenlogy within the broader context of interest in embodied cognition and consciousness studies. Any corrections, suggestions, or criticisms are welcome.

It may be too early to attempt a definitive characterization of the constitutive elements, at the least it is a combination of clinical studies by neurologists, psychiatrists, and psychologists, experimental work on the brain and mind, and philosophical analysis of consciousness and cognition. While the term “neurophenomenology” has a recent (early 1990’s) origin, the project of understanding the mysterious and profound relationship between brain events and awareness goes back at least as far as classical Greek philosophy. Physicians and philosophers have grappled with the enigma of existence and of consciousness for millenia. Psychology has roots in medicine, ethics, and the philosophy of mind and epistemology, but by the late 19th century,  the overlapping fields of biological psychology, psychiatry, behaviorism, and the psychophysiology and psychophysics of perception emerged. We can trace the series of research traditions that eventually developed  into “neurophenomenology” in the 1990’s through ideas and practices of  19th century researchers.  Understanding how these traditions drew from various sources, and subsequently interacted, requires we situate each field in then-current European disciplines. Elites were schooled in the Gymnasia, and acquired a broad and deep education before later specialization.  Physicians and/or laboratory experimentalists were expected to be familiar with classical and to an extent modern philosophy, and gentleman scholars would dabble in but also contribute to numerous fields: highly unlike the current hyper-specialization of academia. Psychology was very pluralistic at this stage: not yet fully divorced from philosophy, still possessing a sense that a field focusing on the richness and complexity of the human psyche must involve a study of consciousness.

There were numerous German psychophysics and psychological researchers looking for how consciousness and the brain were related, such as Herman von Helmholtz (1821-1894), Gustav Fechner (1801-1887), and Wilhelm Wundt (1832-1920).  Much effort was expended on rigorously correlating physiological and psychological measurements, resulting in establishing thresholds of perception and the limits of just noticeable differences. A number of laboratories used experimental methods where subjects told researchers what they were perceiving through verbal reports based on introspection.

Bold innovators like the justly renowned philosopher, psychologist and physician William James (1842-1910) also looked for the physical basis of experience. He pioneered research into neurology, performed psychological experiments, and made creative, yet disciplined, investigations into experiential aspects of mind. James’ use of crisp, lucid language describing consciousness and awareness pushed the threshold of what science, psychology, and philosophy could say about consciousness. James helped establish American experimental psychology, but really hit his stride with his still-fresh writings.  He described how memory and the enigmatic quality of the moment-by-moment flow of experience, and even wrote about altered states of consciousness. His central concept of consciousness being like a stream is still influential, and there is now a renewed appreciation for his work on how emotions are coupled to the physiological state of the body.  All in all, he is probably the most important figure in the history of American psychology. Yet his interdisciplinary boldness, penetrating curiosity and at times virtuostic powers of description of complex mental phenomena were not easily replicated by those researchers and younger colleagues he influenced.

William James, master theorist of consciousness

William James, master theorist of consciousness

In the Principles of Psychology, James provided an admirably straightforward account of what introspection is:

“Introspective observation is what we have to rely on first and foremost and always. The word introspection need hardly be defined – it means, of course, looking into our own minds”

 

The Principles of Psychology

Fin-de-siecle psychophysics was in its golden years during his time, and while James’ wrote admiringly of the “philosophers of the chronometer” and other technically adroit experimental psychologists in his lab that measured perception and other phenomena, James himself continued his project of probing and describing the phenomenology of consciousness itself. While considered a father of introspectionist psychology and a forefather of both behaviorism and cognitive neuroscience, perhaps because of his hard-to-imitate brilliance, James did not leave a school of younger researchers to follow through on his research into consciousness.

In America, Europe, and Russia, generations of research into the organic basis of pathologies was reaching new heights of explanatory power. The German psychiatrist Emil Kraepelin (1856-1926) was formulating sophisticated theories of the physiological basis of mental illness in the early 20th century, in retrospect a crucial step in the early development of the now accomplished field we know as clinical neuropsychology. After each war, neurologists noted the correlations between location of trauma to the brains of the injured with deficits in speech, memory, movement, perception, affect,  emotion,and “body knowledge”. The Russian tradition culminated later in the influential work of Alexander Luria (1902-1977).

The force of new findings in clinical studies, physiology,  and experimental laboratory research eventually produced a scientific psychology that established itself as independent from moral philosophy, epistemology, metaphysics, and the philosophy of language. The success of  19th century psychophysics and neurophysiology, with breakthroughs such as Hermann von  Helmholtz‘s (1821-1894) measurement of the speed of the nerve impulse, provided ample justification for the fissure. Psychophysics experiments painstakingly produced data on the “just-noticeable difference” in light or stimulus intensity, etc. but there were real difficulties in establishing a consensus between the different laboratories on methodologies for dealing with subject’s reports on their perceptions.

While towering figures like Ernst Weber (1795-1878), Wilhelm Wundt (1832-1920), and Edward Titchener (1867-1927) were establishing a canon of principles and techniques for psychology, it proved extremely difficult to come up with one standard way to operationalize measurements that involved verbal reports about  subjective judgments and conscious experience. For all the brainpower deployed in various laboratories, by the 1930’s the tide was turning against scientific research into consciousness due to the influence of behaviorism, which reacted against the lack of an agreed-upon methodology in the German psychophysics-based psychology, especially involving introspection. The behaviorists marshaled an impressive array of experimental measurements techniques to establish causal relationships between stimulus and response, and then to infer lawlike generalizations. They stringently opposed the use of any mental concepts as inherently subjective and thus unscientific, and eschewed using first-person reports as much as possible. Within fields like the psychology of visual perception it was necessary to get verbal reports from subjects, but the behaviorists strove mightily to build a scientific psychology on purely physical principles. But if the behaviorists’ reacted against psychophysics for being insufficiently liberated from concerns with cognitive processes, others argued precisely the opposite. The philosopher Franz Brentano (1838-1917) wrote Psychology From An Empirical Standpoint in 1874, where he popularized the notion that the contents of experience constituted an important field of inquiry in their own right. Brentano’s influential theories of intentionality stressed the need to investigate the contents of awareness and their constitutive operations. Researchers working on cognition who were dissatisfied with the limitations of psychophysics ,and unpersuaded by the soon-to-be dominant anti-mentalist strictures of the behaviorists (such as physiologist Ivan Pavlov (1849-1936) and psychologist/advertising specialist John Watson (1878-1958))  rallied around this line of inquiry. Brentano made an impact among philosophers and psychologists and certain influential clinicians, and in some sense there is a diverse “School of Brentano“.

Arguably the most  influential among the students and followers of Brentano was the mathematician and philosopher Edmund Husserl (1859-1938). Husserl was fascinated (obsessed?) with the foundations of logic, mathematics, epistemology, and cognition.  Convinced by direct criticism from the celebrated logician Gottlob Frege (1848-1925) that psychological principles were epistemologically inadequate to foundationalize mathematical and logical truths, Husserl would eventually synthesize Brentano’s research into the primacy of intentional awareness within cognition with a quest for the undoubtable (or “apodictic”) core principles of mathematics, logic, and philosophy.  After producing light-reading classics such as Philosophie der Arithmetik, he developed a research program  into the first principles of cognition, logic, and epistemology called phenomenology.  While Husserl attracted many philosophers and certain psychologists to his cause with the 1900-1901 publication of the highly influential Logical Investigations, his continual probing of the constituent ideas underlying mathematical and logical truth was to an extent a solitary quest.

logialinvestigations

His acolytes and disciples found the Logical Investigations of great importance, yet they did not take up Husserl’s overarching project of a securing a logical foundation for all science, math, and philosophy. In the case of Martin Heidegger, phenomenology was redefined as the means for a still more fundamental investigation into ontology.

Edmund_Husserl_1900

Edmund Husserl: logician, philosopher, and phenomenologist

Before WWII Husserlian phenomenology was perhaps the most important development in European philosophy, and influenced a number of other fields, such as psychology and medicine.Because his phenomenology took conscious experience as a source of data (following Brentano) many researchers interested in consciousness and cognition were excited by Husserl’s radically rigorous approach and penetrating exploration of how mental processes constitute, shape,  and structure the phenomena of which we are aware. His notion that cognition actively constructs the contents of awareness (compare to Jacob von Uexkull‘s (1864-1944) notion of the umwelt) would be familiar to modern cognitive neuroscientists but to early 20th century psychologists and philosophers was revolutionary. Husserl  influenced the philosophers Martin Heidegger (1889-1976), Jean-Paul Sartre (1905-1980), and Maurice Merleau-Ponty (1908-1961), the logician/mathematician Kurt Godel (1906-1978), the philosopher-theologian Karol Wojtyla (1920-2005), as well as (in more recent years) the prescient critic of Artificial Intelligence philosopher Hubert Dreyfus, and the cognitive neuroscientist Francisco Varela (1946-2001).

In America and Britain, these developments in Continental thought were generally of no interests to the behaviorists, who aside from biologically/medically-based critiques of the sort offered by neurologist Karl Lashley (1890-1958), enjoyed near-hegemony in scientific psychology. But eventually, the rise of computers led to the “cognitive revolution” : the  development of symbolic or information-processing theories of the mind that did not respect orthodox behaviorist’s strictures against the use of mental concepts.  In time, this  willingness to use mental concepts again would open the door to the study of consciousness in psychology and neuroscience . After WWII, the introduction  of computers led to cybernetic,  information-processing, symbolic-logical, and representational models of language, memory, behavior, reasoning, and even awareness.

(Part II is here, and part III is here)

more on the status of introspection in psychology and in neuroscience

cognitive science, introspection

An index of the status of introspection within psychology comes from Medin, Markman, and Ross (2004) in the textbook Cognitive Psychology, which notes (pg.20) that:

Although introspection is not an infallible window to the mind, psychological research is leading to principles that suggest when verbal reports are likely to accurately reflect thinking

These perspectives all can be said to implicitly or explicitly challenge what I shall call the “received view” or the “overly skeptical view”, which is an interpretation of the Nisbett and Wilson work that goes beyond what those authors’ famous paper actually said. While it is the case that the “Telling More than we can Know” Nisbett and Wilson paper argued persuasively that introspection-based reports of subjects asked to retrospect on the causes of their behavior are generally not accurate, these authors made a point of not dismissing the value of introspection and verbal reporting on the contents of cognition one is aware of , such as sensation or perception and “private facts”. But the “received view” of their research all too often neglects or ignores the more nuanced and balanced view about introspection of the authors, as well as that of other cognitive scientists who carefully investigated the issues involved, such as Anders Ericsson and Herbert Simon (1993).   This is an important concept: see Eric Schwitzgebel’s excellent take on the “Nisbett-Wilson myth“.

What is the most important concept to take away from the controversies about introspection? Probably it is that insofar as researchers want to be able to take advantage of all possible tools and data sources to make sense of the complex, enigmatic processes characterizing body knowledge, they should follow the example set by many physicians and some experimentalists, and be willing to get data by asking subjects or patients for their observations on body state. But here I will go one step further, and assert that the accuracy, or lack of accuracy, of verbal report data relative to other data, can serve as that which must be explained by a comprehensive and robust model of personal or self-reportable knowledge of the body. Doing so would require experiments where verbally reported data might be compared to, and possibly integrated with, data from external sources, such as from brain measurement: “neurophenomenology” in operationalized form.

One such effort came from a trio of researchers interested in assessing whether introspective data on pain had measurable neural correlates (Coghill, McHaffie, Yen, 2003, pg. 8538):

Using psychophysical ratings to define pain sensitivity and functional magnetic resonance imaging to assess brain activity, we found that highly sensitive individuals exhibited more frequent and more robust pain-induced activation of the primary somatosensory cortex, anterior cingulate cortex, and prefrontal cortex than did insensitive individuals. By identifying objective neural correlates of subjective differences, these findings validate the utility of introspection and subjective reporting as a means of communicating a first-person experience

This forward-looking research in effect turns behaviorism on its head: instead of verbal reports being rejected or at best tolerated within the overall context of strict objectivity, the very phenomenon the model seeks to explain is “subjective”!