What do clinicians come to know about their patient’s heart sensations?

Uncategorized

What do clinicians come to know about their patient’s heart sensations? This is not a simple question, as it simultaneously looks at patients as people with bodily experiences, but also as humans understood as systems, as a sort of living machine. What is more intimate than our heart-beating, a familiar yet mysterious sensation we know to be at the very basis of our ongoing experience? Feeling a change in the rhythm or intensity of this fundamental aspect of our embodied existence can be very worrisome. Should clinicians believe patients who complain of cardiac rhythm changes? How accurate are people at detecting medically important heart-beat fluctuations? How should clinicians understand the relationship between symptoms as reported by the patient, and underlying physiological processes? These are complex and multifaceted issues, requiring nimble clinicians who integrate scientific knowledge as well as intuition about what the patient is experiencing bodily. Clinicans develop knowledge of their own bodies through life, and then are required to learn complex anatomical, physiological, and etiological concepts they will use to interpret their patient’s symptom reports. What patients have to say about what is happening in their bodies must be taken seriously, but not necessarily believed. The interrelated problems of how clinicians interpret patient verbal reports, reason about the relation between these reports compared to measurements and scientific models, and then make judgments about the patient’s accuracy in knowing about their own bodies are topics well worth honing in on, and to my knowledge, not throughly explored from a neurophenomenological perspective.

These acts of clinician cognition concerning their patient’s symptoms are framed by an evolving social and professional context. Modern medicine, like the Roman god Janus, stands two-faced, towards healing as an art, but also towards scientific models of disease. In the current era, what is known as “evidence-based medicine” requires an important shift in how clinicians operate, from historically rather unfettered individual judgments in some contexts, to increasingly accepting consensus-developed guidelines formulated from reviews of previous findings. Clinicans who have with great effort developed the ability to intuit diagnoses may have to defend their familiar constructs, criteria, heuristics, and practices if these are not bolstered by peer-reviewed studies, randomized clinical trials, systematic reviews, Bayesian statistical approaches to clinical problem solving, meta-analysis of previous data, and effectiveness metrics. Medical organizations can mandate “best practices” of patient care, “gold standards” of cost-effectiveness for ordering certain tests, references to efficacy criteria that must be satisfied before a program of treatment is established, and more. This ongoing process is transforming medicine, requiring that the traditional art of diagnosis based on years of education and experience be integrated with operationalized definitions, committee-approved metrics, and greater formalization, thus constraining individual opinion and practices in favor of organization-mandated standard operating procedures. Can symptoms based on an individual’s embodied experience be given proper attention in this brave new world of medicine?

I hope that more researchers would address the clinical aspects of neurophenomenology. This is a relatively new and undeveloped area. While William James and Erwin Straus were clinicians, as is Antonio Damasio, other pioneers such as Maurice Merleau-Ponty and Francisco Varela backgrounded medical concerns somewhat (however, if you are unaware of Varela’s haunting work at the end of his life “Intimate Distances -Fragments for a Phenomenology of Organ Transplantation“, it is a must-read.) Shawn Gallagher has made an excellent synthesis of philosophy and clinical studies in “How the Body Shapes the Mind“, a work that bears greater attention from the small community of neurophenomenology researchers.

For my part, I shall focus in on a particular area, palpitations, where changes towards operationalizing and standardizing the definition of “clinically significant” symptoms are occurring, with the aim of modeling the relationship between patient symptom reports and “significant” arrhythmias as revealed on ECG measurements. I will especially focus on how the predictive utility and accuracy of the reports can be operationalized, and attempt to represent for one domain how patients’ verbalization of their phenomenological state can be “mapped” onto measurements of cardiac rhythm abnormalities.

Advertisements

History of the development of neurophenomenology pt.II-cognitivism, neurology, and psychology

cognitive science, Francisco Varela, medicine, neurophenomenology

(Part I is here, and part III is here)

In certain respects, development of the view that embodied experience is crucial to understanding the mind and brain reached a nadir in the period after World War II, at least within psychology. Behaviorism had redefined psychology as an “objective” science with no need to refer to consciousness or phenomenology.  There was continuation of phenomenological research from the German gestalt psychologists, but it was not until after World War II that clinically-oriented humanistic psychology explicitly articulated the need for more holistic, “person-centric” perspectives emphasizing existential concerns: the search for meaning, the experience of health and illness, emotions, and consciousness.

While many philosophers in Europe continued to develop phenomenology, Contintental philosophy was increasingly concerned with logical positivism, which emphasized that many traditional problems could be solved through formal logic, and those not approachable in this way were suspect.  Formal logic reached a apotheosis  of sorts with the advent of computers, a class of systems having internal memory storage and symbolic-logical operations, and with them came a number of seminal figures that transformed models of mind and brain. In particular,  Norbert Weiner‘s (1894-1964) meta-discipline of cybernetics, Claude Shannon‘s (1916-2001) information theory, Alan Turing‘s  (1912-1954) and John von Neumann‘s (1903-1957) canonical work on computation, Jean Piaget‘s (1896-1980) theories of the sequential process by which infants and small children learn language and perception in stages, all resulted in an explosion of new perspectives on cognition, language, memory, perception, problem-solving.  By the late 1950’s the overlapping field(s) of artificial intelligence (AI) and cognitive science got the attention of researchers in psychology, linguistics, philosophy of mind, neuroscience, anthropology, therapy, and organizational management. Herbert Simon (1916-2001) modeled human problem solving in the face of uncertain information, and co-developed what became known as general systems theory, and along with Allen Newell (1927-1992) developed automated theorem-provers and chess-playing programs. Noam Chomsky‘s investigation of the symbolic logical rules underlying grammar and syntax generated an attack on environment-produced behaviorist theories of language, the flaws of which dramatically came to a head in the North Texas Symposium on Language in 1959.

While the door to explaining psychological phenomena in terms of mental categories and concepts had been re-opened, these new models generally formulated explanations in terms of impersonal information-processing and rule-based symbolic-logical theories of non-conscious aspects of the mind. These new “cognitivists” had absorbed certain scruples from the behaviorists, and typically disdained concepts such as “consciousness” in their models of the mental processes. Cognitivism remained “system-centric”, not person or body-centered, and focused on reducing mental activity to computational,information-processing and representational processes. There was a general lack of interest in using various first-person, introspection-based methods such as those of William James, or Edmund Husserl, though cognitivism and behaviorism alike asked subjects for verbal reports within experiments.

However, clinical neurologists continued to advance an approach to psychological and cognitive phenomena that reflected a richer and broader understanding of the mind. The First and Second World Wars provided a huge pool of subjects with specific localized lesions and corresponding deficits in memory, speech, motion, etc.  The Russian neurologist Alexander  Luria (1902-1977)  spent about 30 years with a patient, the soldier Zazetsky, who sustained a bullet wound to his left occipito-parietal cortex.  Zazetsky’s struggle to use journal writing cope with being unable to remember new events is described in  The Man With a Shattered World (1972) as a fight “to live, not merely exist.” Zazetsky wrote: “I’m in a fog all the time…. All that flashes through my mind are images…hazy visions that suddenly appear and disappear.”

a7f3f96642a07af2db1e8110.L._AA240_

Taking the long view of the development of a science of the mind, the praxis-driven demands of the clinic balanced somewhat the behaviorist  and cognitivist disavowal of consciousness as a research topic. Focusing on the struggle of a brain-injured patient to live meaningfully meant that at least a small part of the ever-more fragmented field of psychology overtly or implicitly emphasized embodied and conscious aspects of cognition.  It should be emphasized that a division of labor was in effect. Clinicians deal with people, while cognitive scientists deal with systems. As neurologists and psychologists published case studies,  the more theoretically minded extrapolated from these reports to highlight an understanding  of human mental functioning that did not exclude consciousness and the existential, personal, meaningful dimensions of experience that are grounded in the lived body.

Across the ocean, in France, while structuralism began to dominate intellectual life after World War II, developments in phenomenological research continued apace. Most imprtantly was the philosopher Maurice Merleau-Ponty (1908-1961) analyzed and critqued the phenomenology of the philosopher/mathematician Edward Husserl. Foregoing Husserl’s hugely ambitious project of project of providing the most rigorous epistemological foundation possible for science and philosophy through investigations into experience, Merleau-Ponty attempted to reintegrate the penetrating Husserlian observation analysis of conscious phenomena into the structure of how consciousness is grounded and lived out bodily.

Phenomenologist Maurice Merleau-Ponty

Phenomenologist Maurice Merleau-Ponty

This change of emphasis allowed a bridge towards grasping how the lived body is related to the objectively-described physical body of physiology, behaviorism, and brain science. Works such as The Structure of Behavior and The Phenomenology of Perception are tantalizing hints that had Merleau-Ponty lived a long life, neurophenomenology might have emerged decades before the 1990’s. Merleau-Ponty articulated a post-Cartesian view of the mind that subverted the subject-object split. He used the notion of co-constitutionality to grapple with the enigmatic coupling and engagement of embodied mind to the world.  Two quotes from The Phenomenology of Perception are appropos (pg. 407):

Inside and outside are inseparable” (pg. 407)

Insofar as I have hands, feet; a body, I sustain around me intentions which are not dependent on my decisions and which affect my surroundings in a way that I do not choose” (pg. 440)

51OpeN9kQQL

Those psychiatrists and psychologists who attempted to apply the insights of Husserl, Martin Heidegger (1889-1976) and Merleau-Ponty especially developed what became known as phenomenological psychology. Heidegger gave lectures to physicians about ontology,while Ludwig Binswanger (1881-1966) and Medard Boss (1903-1990) attempted to apply his analysis of dasein (“being-there”) to clinical contexts. Phenomenological psychology showed a pronounced clinical influence from a key synthesizer of the neurological and phenomenological research traditions:  the neuropsychiatrist Erwin Straus (1891-1975, who was possibly the first neurophenomenologist.

Erwin Straus, MD: the first neurophenomenologist?

Erwin Straus, MD: the first neurophenomenologist?

He is quoted in Man, Time, and World: Two Contributions to Anthropological Psychology (1982) as stating:

The physiologist, who in the everyday world relates behavior and brain, actually makes three kinds of things into objects of his reflection: behavior, the brain as macroscopic formation, and the brain in its microscopic structure and biophysical processes. From the whole-the living organism-the inquiry descends to the parts: first of all to an organ-the brain-and finally to its histological elements. Statements concerning the elementary processes acquire their proper sense only in reference back to the original whole

Probably the best known exponent of a phenomenogical approach to clinical psychology and psychiatry was RD Laing (1927-1989), who in 1965 wrote a classic case-study analysis of the experience of schizoids in The Divided Self: an existential study in sanity and madness. In it he describes one patient:

“Julie’s self-being had become so fragmented that she could best be described as living a death-in-life existence in a state approaching chaotic nonentity.

In Julie’s case, the chaos and lack of being an identity were not complete. But in being with her one had for long periods that uncanny ‘praecox’ feeling described feeling’ described by the German clinicians, i.e. of being in the presence of another human being and yet feeling that there was no one there. Even when one felt that what was being said was an expression of someone, the fragment of a self behind the words or actions was not Julie. There might be someone addressing us, but in listening to a schizophrenic, it is very difficult to know ‘who’ is talking, and it is just as difficult to know ‘whom’ is addressing.”

In the 1970’s and early 1980’s, neurologists like Oliver Sacks continued in the neuropsychological tradition of Luria, and documented the  existential struggles of patients with brain disorders. In 1970  he produced an eminently readable,  phenomenologically rich classic of neuropsychology: The Man Who Mistook His Wife for a Hat.  He wrote persuasively that while there are indeed computer-like aspects of the brain, the cognitive, computationalist or information-processing model nonetheless does not address the full spectrum of human psychological reality (pg. 20):

But our mental processes, which constitute our being and life, are not just abstract and mechanical, but personal, as well.”

1834-1

The European-flavored, humanistic field of phenomenological psychology (also called existential-phenomenological psychology)  offers an alternative for researchers dissatisfied with mechanistic cognitivitism, behaviorism and physiological psychology. However, as far as I can tell,  after the passing of Erwin Straus, phenomenological psychology has had little or no interest in cognitive neuroscience. The major exception to this I can find was in 1981, when phenomenological/biophysiological psychologist Donald Moss and cognitive neuroscientist Karl Pribram each wrote fascinating essays on comparing brain science and phenomenology  in the collection The Metaphors of Consciousness (Valle and von Eckartsberg, Eds). This is of historical interest as an early instance of an explicit dialoug between neuroscience and existential-phenomenology.

92ebe03ae7a045d335c3d110.L._AA240_

Pribram’s essay “Behaviorism, Phenomenology, and Holism in Psychology” pointed to the need for a broader, phenomeologically and neurobiologically informed  approach to psychology (pg. 142:

“But there are limits to understanding achieved solely through the observation and experimental analysis of behavior. These limits are especially apparent when problems other than overt behavior are addressed, problems related to thought or to decisional processes, to appetive and other motivational mechanisms, to emotions and feelings, and even to images and perception”.

and (pg. 146):

“Existential-phenomenological psychology has not, up to now, been very clear in it’s methods. I suggest that multidimensional analyses (factor analysis, principle components analysis, stepwise discriminant analysis) might serve well as tools to investigate the structure of experience-in-the-world.”

Moss lucidly analyzed the similarities and divergences between neuroscience and existential-phenomenology  in a essay entitled “Phenomenology and Neuropsychology” (pg.159):

“Pribram points to the role of the brain processes in”constructing” the world as perceived. Yet existential-phenomenology has also emphasized the “constituting functions”of the ego (Husserl), the constituitive role of the lived body (Merleau-Ponty), and the role of the human body and upright posture in articulating the world of sensory experience (Straus). Thus, neither school of thought naively recognizes a reality per se unaffected by the presence and condition of the organism. ”

Such exchanges occurred on the margins of mind-science. By the 1960’s, the largely cold-war funded research program of Artificial Intelligence (A.I) and growing interest in cognitive or information-processing approaches to problems in psychology etc. had produced a “cognitive revolution”.  Some brave cognitivists even made use of introspective techniques (though not without drawing fire from behaviorists). Herbert Simon asked his subjects to verbally report on how they solved logic-puzzles, much to the chagrin of the remaining orthodox behaviorists. The renewal of mentalistic language and willingness to freely use data from introspection and verbal reports from subjects  about how they solved logic problems was a robust challenge to the behaviorists, but over time a rapprochement ensued.

But what really allowed the scientific study of consciousness and experience to re-emerge was the success of theoretical and laboratory neuroscience. EEG data had been produced for years with good temporal but limited spatial resolution, but in the 1970’s and 1980’s an alphabet soup of new imaging technologies (CAT, PET, MRI, and recently MEG) allowed neuroscientists to better “peek inside” the living brains of subjects in experiments. Progress in molecular biology, genomics, and biophysics in the postwar West allowed curious researchers to formulate models of emotions in chemical terms, such as the finding of endogenous opiates (or endorphins) and their receptors in the brain. The finding that nerve fibers connect with the organs of the immune system helped ground theories of the effect of emotions and beliefs on health, leading to the interdiscipline of psychoneuroimmunology. A growing industry to synthesize pharmaceutical products based on the molecular structure of receptor proteins has led to neuropharmacology and neuropsychopharmacology.

Some brain researchers looking for theoretical models of the mind found the information-processing/computationalist approach of the cognitivists limiting in understanding emotions and experience. Cognitive science itself had been rocked from its early (late 1950’s-early 1960’s) success to the gradual realization that many aspects of mind are not easily characterized as formal-logical, rule-based systems, as had been predicted by the phenomenologically-informed philosopher Hubert Dreyfus (1972) in What Computers Can’t Do, where he argued that rule-based, symbolic-logical, representationalist models of mind and language fail to deal with the radically embodied nature of cognition. This was hotly rejected by prominent AI researchers, but later influenced Terry Winograd, among others.

images1

Mostly the insights of clinical neurologists and phenomenological psychologists were ignored in postwar cognitive science, which had a great overlap with computer science and Artificial Intelligence (A.I). Indeed, cognitivists and AI engineers might profess agnosticism about the neurobiology of the mind, viewing  brain “hardware” as the domain of other specialists. In the late 1950’s and through the 1960’s, cognitive science and Artificial Intelligence seemed to have revolutionary new insights. AI as engineering of useful artifacts overlapped with AI as cognitive modeling. An early era of exciting optimism eventually gave way to slow progress on “general purpose” problem solving.  The limitations of their symbolic-logical, information-processing, and computationalist approach led others to develop the hybrid field of cognitive neuroscience. Sometimes there were interesting discrepancies between the two: onetime “pure” cognitivist Stephen Kosslyn performed neuroimaging experiments on subjects who were asked to rotate mental objects. According to John McCrone’s report of Kosslyn’s work in Going Inside: A Tour ‘Round a Single Moment of Consciousness, the resulting pattern of distributed activity across disparate brain regions was difficult to reconcile with the neat schematic Kosslyn had developed as an abstract cognitive model possessing a few modules for accomplishing aspects of the rotation operation. This lends credence to those who propose that cognitive science must be much more thoroughly integrated with the “gory details” of neuroscience, with the neural networks/connectionist camp serving as a conceptual bridge fro brain to symbols and representations. Over time, the lack of interest in biology and “implementation agnosticism” of some computationalist cognitive scientists has given way to modern cognitive neuroscience. A movement in the 1980’s to reform cognitive science and artificial intelligence along biologically-inspired and “subsymbolic” lines known as connectionism, artificial neural-networks, and parallel-distributed processing splits cogntivism to this day.

A pathbreaking  (and for some, puzzling*) book appeared in the second half of the 1980’s that seemd to point the way to a synthesis of neurobiology, cognitivism, computer science, and phenomenology: Understanding computers and cognition: a new foundation for design by AI and language-processing expert Terry Winograd and Fernando Flores:

9780201112979

The book proposed a phenomenologically-grounded understanding of how people in real-world environments use systems that software designers build. It took  inspiration from Humberto Maturana and Francisco Varela‘s  idea of autopoesis, a cybernetics-inspired, dynamical theory of organisms self-organizing  their own  structure by regenerating parts and by being coupled to their environment, until death.  The brains of creatures do not represent features (such  as colors) of objects external to them as cognitivists typically assume.  Rather, each ecologically-situated animal brings forth or co-constitutes a perceived world through evolutionarily-selected sensorimotor systems.  Autopoesis is a sort of post-Cartesian biology, and  Maturana and Varela described it in 1981 as:

“a network of processes of production (transformation and destruction) of components which: (i) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produced them; and (ii) constitute it (the machine) as a concrete unity in space in which they (the components) exist by specifying the topological domain of its realization as such a network.”

While a cognitivist might recognize a consonance with cybernetics here, abandoning representationalism is very difficult for some. What other bridging concepts are there to relate brain and mind events? This is still an open issue.

As it turned out, a sophisticated alternative to cognitivism was on the way: Walter Freeman, Francisco Varela, and others have offered a post-representationalist approach to consciousness, cognition, and the brain based in dynamical systems theory. The undercurrents of dissatisfaction with  understanding the mind as information-processing, rule-based symbolic  logical procedures, and “computations over representations”  emerged in the 1990’s  as embodied cognitive science and neurophenomenology.

(Part I is here, and part III is here)

*-when asked about Understanding Computers and Cognition, a doctoral student in psychology I knew could only shake his head, raise his eyebrows,  and say “that’s a weird book”

History of the development of neurophenomenology-pt.1

introspection, medicine, neurophenomenology

(Part II is here, and Part III is here)

I will attempt in three essays to outline the sweep of ideas, researchers, and works that lead a few of us to speak of “neurophenomenology” as a more or less distinct field.  Part I traces 19th century psychology, neurology, and phenomenology roughly up to World War II. Part II examines the impact of cognitivism, the continued development of clinical neurology and basic neuroscience, the progression of phenomenological thought in psychology and medicine, and criticisms of cognitive science. Part III explores the early 1990’s origins of the emerging field of neurophenomenlogy within the broader context of interest in embodied cognition and consciousness studies. Any corrections, suggestions, or criticisms are welcome.

It may be too early to attempt a definitive characterization of the constitutive elements, at the least it is a combination of clinical studies by neurologists, psychiatrists, and psychologists, experimental work on the brain and mind, and philosophical analysis of consciousness and cognition. While the term “neurophenomenology” has a recent (early 1990’s) origin, the project of understanding the mysterious and profound relationship between brain events and awareness goes back at least as far as classical Greek philosophy. Physicians and philosophers have grappled with the enigma of existence and of consciousness for millenia. Psychology has roots in medicine, ethics, and the philosophy of mind and epistemology, but by the late 19th century,  the overlapping fields of biological psychology, psychiatry, behaviorism, and the psychophysiology and psychophysics of perception emerged. We can trace the series of research traditions that eventually developed  into “neurophenomenology” in the 1990’s through ideas and practices of  19th century researchers.  Understanding how these traditions drew from various sources, and subsequently interacted, requires we situate each field in then-current European disciplines. Elites were schooled in the Gymnasia, and acquired a broad and deep education before later specialization.  Physicians and/or laboratory experimentalists were expected to be familiar with classical and to an extent modern philosophy, and gentleman scholars would dabble in but also contribute to numerous fields: highly unlike the current hyper-specialization of academia. Psychology was very pluralistic at this stage: not yet fully divorced from philosophy, still possessing a sense that a field focusing on the richness and complexity of the human psyche must involve a study of consciousness.

There were numerous German psychophysics and psychological researchers looking for how consciousness and the brain were related, such as Herman von Helmholtz (1821-1894), Gustav Fechner (1801-1887), and Wilhelm Wundt (1832-1920).  Much effort was expended on rigorously correlating physiological and psychological measurements, resulting in establishing thresholds of perception and the limits of just noticeable differences. A number of laboratories used experimental methods where subjects told researchers what they were perceiving through verbal reports based on introspection.

Bold innovators like the justly renowned philosopher, psychologist and physician William James (1842-1910) also looked for the physical basis of experience. He pioneered research into neurology, performed psychological experiments, and made creative, yet disciplined, investigations into experiential aspects of mind. James’ use of crisp, lucid language describing consciousness and awareness pushed the threshold of what science, psychology, and philosophy could say about consciousness. James helped establish American experimental psychology, but really hit his stride with his still-fresh writings.  He described how memory and the enigmatic quality of the moment-by-moment flow of experience, and even wrote about altered states of consciousness. His central concept of consciousness being like a stream is still influential, and there is now a renewed appreciation for his work on how emotions are coupled to the physiological state of the body.  All in all, he is probably the most important figure in the history of American psychology. Yet his interdisciplinary boldness, penetrating curiosity and at times virtuostic powers of description of complex mental phenomena were not easily replicated by those researchers and younger colleagues he influenced.

William James, master theorist of consciousness

William James, master theorist of consciousness

In the Principles of Psychology, James provided an admirably straightforward account of what introspection is:

“Introspective observation is what we have to rely on first and foremost and always. The word introspection need hardly be defined – it means, of course, looking into our own minds”

 

The Principles of Psychology

Fin-de-siecle psychophysics was in its golden years during his time, and while James’ wrote admiringly of the “philosophers of the chronometer” and other technically adroit experimental psychologists in his lab that measured perception and other phenomena, James himself continued his project of probing and describing the phenomenology of consciousness itself. While considered a father of introspectionist psychology and a forefather of both behaviorism and cognitive neuroscience, perhaps because of his hard-to-imitate brilliance, James did not leave a school of younger researchers to follow through on his research into consciousness.

In America, Europe, and Russia, generations of research into the organic basis of pathologies was reaching new heights of explanatory power. The German psychiatrist Emil Kraepelin (1856-1926) was formulating sophisticated theories of the physiological basis of mental illness in the early 20th century, in retrospect a crucial step in the early development of the now accomplished field we know as clinical neuropsychology. After each war, neurologists noted the correlations between location of trauma to the brains of the injured with deficits in speech, memory, movement, perception, affect,  emotion,and “body knowledge”. The Russian tradition culminated later in the influential work of Alexander Luria (1902-1977).

The force of new findings in clinical studies, physiology,  and experimental laboratory research eventually produced a scientific psychology that established itself as independent from moral philosophy, epistemology, metaphysics, and the philosophy of language. The success of  19th century psychophysics and neurophysiology, with breakthroughs such as Hermann von  Helmholtz‘s (1821-1894) measurement of the speed of the nerve impulse, provided ample justification for the fissure. Psychophysics experiments painstakingly produced data on the “just-noticeable difference” in light or stimulus intensity, etc. but there were real difficulties in establishing a consensus between the different laboratories on methodologies for dealing with subject’s reports on their perceptions.

While towering figures like Ernst Weber (1795-1878), Wilhelm Wundt (1832-1920), and Edward Titchener (1867-1927) were establishing a canon of principles and techniques for psychology, it proved extremely difficult to come up with one standard way to operationalize measurements that involved verbal reports about  subjective judgments and conscious experience. For all the brainpower deployed in various laboratories, by the 1930’s the tide was turning against scientific research into consciousness due to the influence of behaviorism, which reacted against the lack of an agreed-upon methodology in the German psychophysics-based psychology, especially involving introspection. The behaviorists marshaled an impressive array of experimental measurements techniques to establish causal relationships between stimulus and response, and then to infer lawlike generalizations. They stringently opposed the use of any mental concepts as inherently subjective and thus unscientific, and eschewed using first-person reports as much as possible. Within fields like the psychology of visual perception it was necessary to get verbal reports from subjects, but the behaviorists strove mightily to build a scientific psychology on purely physical principles. But if the behaviorists’ reacted against psychophysics for being insufficiently liberated from concerns with cognitive processes, others argued precisely the opposite. The philosopher Franz Brentano (1838-1917) wrote Psychology From An Empirical Standpoint in 1874, where he popularized the notion that the contents of experience constituted an important field of inquiry in their own right. Brentano’s influential theories of intentionality stressed the need to investigate the contents of awareness and their constitutive operations. Researchers working on cognition who were dissatisfied with the limitations of psychophysics ,and unpersuaded by the soon-to-be dominant anti-mentalist strictures of the behaviorists (such as physiologist Ivan Pavlov (1849-1936) and psychologist/advertising specialist John Watson (1878-1958))  rallied around this line of inquiry. Brentano made an impact among philosophers and psychologists and certain influential clinicians, and in some sense there is a diverse “School of Brentano“.

Arguably the most  influential among the students and followers of Brentano was the mathematician and philosopher Edmund Husserl (1859-1938). Husserl was fascinated (obsessed?) with the foundations of logic, mathematics, epistemology, and cognition.  Convinced by direct criticism from the celebrated logician Gottlob Frege (1848-1925) that psychological principles were epistemologically inadequate to foundationalize mathematical and logical truths, Husserl would eventually synthesize Brentano’s research into the primacy of intentional awareness within cognition with a quest for the undoubtable (or “apodictic”) core principles of mathematics, logic, and philosophy.  After producing light-reading classics such as Philosophie der Arithmetik, he developed a research program  into the first principles of cognition, logic, and epistemology called phenomenology.  While Husserl attracted many philosophers and certain psychologists to his cause with the 1900-1901 publication of the highly influential Logical Investigations, his continual probing of the constituent ideas underlying mathematical and logical truth was to an extent a solitary quest.

logialinvestigations

His acolytes and disciples found the Logical Investigations of great importance, yet they did not take up Husserl’s overarching project of a securing a logical foundation for all science, math, and philosophy. In the case of Martin Heidegger, phenomenology was redefined as the means for a still more fundamental investigation into ontology.

Edmund_Husserl_1900

Edmund Husserl: logician, philosopher, and phenomenologist

Before WWII Husserlian phenomenology was perhaps the most important development in European philosophy, and influenced a number of other fields, such as psychology and medicine.Because his phenomenology took conscious experience as a source of data (following Brentano) many researchers interested in consciousness and cognition were excited by Husserl’s radically rigorous approach and penetrating exploration of how mental processes constitute, shape,  and structure the phenomena of which we are aware. His notion that cognition actively constructs the contents of awareness (compare to Jacob von Uexkull‘s (1864-1944) notion of the umwelt) would be familiar to modern cognitive neuroscientists but to early 20th century psychologists and philosophers was revolutionary. Husserl  influenced the philosophers Martin Heidegger (1889-1976), Jean-Paul Sartre (1905-1980), and Maurice Merleau-Ponty (1908-1961), the logician/mathematician Kurt Godel (1906-1978), the philosopher-theologian Karol Wojtyla (1920-2005), as well as (in more recent years) the prescient critic of Artificial Intelligence philosopher Hubert Dreyfus, and the cognitive neuroscientist Francisco Varela (1946-2001).

In America and Britain, these developments in Continental thought were generally of no interests to the behaviorists, who aside from biologically/medically-based critiques of the sort offered by neurologist Karl Lashley (1890-1958), enjoyed near-hegemony in scientific psychology. But eventually, the rise of computers led to the “cognitive revolution” : the  development of symbolic or information-processing theories of the mind that did not respect orthodox behaviorist’s strictures against the use of mental concepts.  In time, this  willingness to use mental concepts again would open the door to the study of consciousness in psychology and neuroscience . After WWII, the introduction  of computers led to cybernetic,  information-processing, symbolic-logical, and representational models of language, memory, behavior, reasoning, and even awareness.

(Part II is here, and part III is here)

more on the status of introspection in psychology and in neuroscience

cognitive science, introspection

An index of the status of introspection within psychology comes from Medin, Markman, and Ross (2004) in the textbook Cognitive Psychology, which notes (pg.20) that:

Although introspection is not an infallible window to the mind, psychological research is leading to principles that suggest when verbal reports are likely to accurately reflect thinking

These perspectives all can be said to implicitly or explicitly challenge what I shall call the “received view” or the “overly skeptical view”, which is an interpretation of the Nisbett and Wilson work that goes beyond what those authors’ famous paper actually said. While it is the case that the “Telling More than we can Know” Nisbett and Wilson paper argued persuasively that introspection-based reports of subjects asked to retrospect on the causes of their behavior are generally not accurate, these authors made a point of not dismissing the value of introspection and verbal reporting on the contents of cognition one is aware of , such as sensation or perception and “private facts”. But the “received view” of their research all too often neglects or ignores the more nuanced and balanced view about introspection of the authors, as well as that of other cognitive scientists who carefully investigated the issues involved, such as Anders Ericsson and Herbert Simon (1993).   This is an important concept: see Eric Schwitzgebel’s excellent take on the “Nisbett-Wilson myth“.

What is the most important concept to take away from the controversies about introspection? Probably it is that insofar as researchers want to be able to take advantage of all possible tools and data sources to make sense of the complex, enigmatic processes characterizing body knowledge, they should follow the example set by many physicians and some experimentalists, and be willing to get data by asking subjects or patients for their observations on body state. But here I will go one step further, and assert that the accuracy, or lack of accuracy, of verbal report data relative to other data, can serve as that which must be explained by a comprehensive and robust model of personal or self-reportable knowledge of the body. Doing so would require experiments where verbally reported data might be compared to, and possibly integrated with, data from external sources, such as from brain measurement: “neurophenomenology” in operationalized form.

One such effort came from a trio of researchers interested in assessing whether introspective data on pain had measurable neural correlates (Coghill, McHaffie, Yen, 2003, pg. 8538):

Using psychophysical ratings to define pain sensitivity and functional magnetic resonance imaging to assess brain activity, we found that highly sensitive individuals exhibited more frequent and more robust pain-induced activation of the primary somatosensory cortex, anterior cingulate cortex, and prefrontal cortex than did insensitive individuals. By identifying objective neural correlates of subjective differences, these findings validate the utility of introspection and subjective reporting as a means of communicating a first-person experience

This forward-looking research in effect turns behaviorism on its head: instead of verbal reports being rejected or at best tolerated within the overall context of strict objectivity, the very phenomenon the model seeks to explain is “subjective”!

symptom verbal reports and existential-physiological discrepancy

clinical neurophenomenology, interoception, introspection, medicine, symptom reports, visceral perception

While the anatomical basis of how nerve projections enable perception of the body is rather well known, physicians confront situations where patient verbal reporting about symptoms does not match models based on neurophysiological mechanisms. For instance, the Merck Manual Medical Library (2009) states:

“Painful stimuli from thoracic organs can produce discomfort      described as pressure, gas, burning, aching, and sometimes sharp pain. Because the sensation is visceral in origin, many patients deny they are having pain and insist it is merely discomfort”

The Mayo Clinic Heart Book (Gersh, 2000) describes the concept of uncomfortable feeling of thumping inside the chest known as palpitations, but does so from the point of view of patients (pg. 38):

“Although the apparent cause of the thumping in the chest would seem to be the heartbeat, this is not always the case. Some people have a normal heart rate during their palpitations. Presumably, they are either anxious or experiencing chest wall twitching that is mistaken for heartbeats”

Situations where the “folk physiological” (see Churchland, 1989, for a description of expert knowledge vs. folk beliefs) understanding of the body is apparently falsified by science can be labeled examples of existential-physiological discrepancy (Laughlin, McManus, D’Aquili, 1990). Mismatches between body-as-experienced compared to the “objective body” of scientific medicine and physiology (including the feeling of “phantom limbs” by amputees) are based on the idea that people may often have very limited “true” access to physiological processes. A more commonly presented variant or subset of this principle is the idea of “referred pain”, where the region causing understood to be causing the pain is spatially removed from the area where the patient senses it.

The Merck Manual (2009) gives an example: sometimes pain felt in one area of the body does not accurately represent where the problem is, because the pain is referred there from another area. Pain can be referred because signals from several areas of the body often travel through the same nerve pathways in the spinal cord and brain. For example, pain from a heart attack may be felt in the neck, jaws, arms, or abdomen. Pain from a gallbladder attack may be felt in the back of the shoulder.

Jack and Roepstorff on introspection

cognitive science, introspection, symptom reports

From Trusting the Subject (2003), Anthony Jack and Andreas Roepstorff write:

0907845568

“The unique challenge facing a science of consciousness is that that the best instrument available for measuring experience depends on cognitive processes internal to the subject. So just how much faith can we place in the capacity of the mind to understand itself? In principle, the construction of a maximally robust methodology for introspective evidence would require a detailed understanding of the operation of introspective processes — the processes that mediate the acquisition of introspective knowledge and underlie the production of introspective reports”

And:

“It is important to realize that no principled problem stands in the way of the scientific assessment of various types of introspective evidence. The testing of the reliability, consistency and validity of various types of introspective report measures lies well within the orbit of currently available methods. A measure may be called ‘reliable’ if it yields the same results when tested in multiple sessions over time (‘test–retest reliability’) and across individuals (a cousin of ‘inter-rater’ and ‘inter-observer’ reliability). Of course, subjects’ reports may differ, and so appear to be unreliable, simply because their internal mental processes and states vary. Thus it is critical to establish well controlled experimental conditions for eliciting reports. The considerable advances in behavioural science since the time of the Introspectionists offers experimenters considerable advantages in this regard (see Ericsson, this volume). Not only do these advances make it much more probable that experimenters can establish conditions under which introspective measures can be shown to be reliable, they also provide much greater insight into the behavioural and neural correlates of experiential phenomena.

A measure may be called ‘consistent’ when it can be shown that the results are not due to specific features of the measurement technique. Tests of consistency provide a means of checking that the observed effect is not due to a methodological artefact. Thus we might test the consistency of introspective  evidence by comparing immediate forced-choice button-press reports with retrospective and open-ended verbal reports. In this way we might establish, for instance: that the results of forced-choice button-press reports have not been influenced by variations in the criterion for response or by automatisation of response such that they no longer constitute true introspective reports; and that retrospective reports have not been distorted by forgetting or memory interference effects.

‘Validity’ is the most important factor to establish, yet it is also the most theoretically complex, and a particularly vexed issue in cognitive science. A measure is validated when it can be shown to accurately reflect the phenomenon it purports to measure. Validity is complex because scientific measures are often simultaneously interpreted as providing evidence for phenomena at a number of
different levels. A rough characterisation of three major sources of evidence in cognitive science might read as follows:

-Data from functional Magnetic Resonance Imaging (fMRI) serves most directly as evidence of cerebral blood flow (which has been validated), less directly as evidence for neural activity (which is in the process of being properly validated), and least directly as a means of identifying and localising specific cognitive functions (far from well validated).

– Behavioural measures (e.g. the averaging of reaction time measures over multiple trials) serve most directly as evidence for stable patterns of behaviour, less directly as a means of assessing information processing, and least directly as means of establishing the existence and operation of specific cognitive functions.

-Introspective reports serve most directly as evidence about the beliefs that subjects have about their own experience, less directly as evidence concerning the existence of experiential phenomena, and least directly as evidence concerning the operation of specific cognitive functions.