Critical Neuroscience-Neurophenomenology in Psychiatry by Laurence Kirmayer, MD

clinical neurophenomenology, disease classification, history of neurophenomenology, medicine, psychiatry, psychology, symptom reports

Here is a thought provoking lecture on YouTube which investigates psychiatry’s problematic foundations, especially in terms of the influence of culture,  individual differences, and neurodiversity.

http://www.youtube.com/watch?v=PsubfDIKgUw Laurence Kirmayer is an MD at McGill University, and he has a lot to say about using clinical neurophenomenology to explore some very murky but important issues in psychiatry.  There really are problems that make psychiatry different from the rest of medicine, because however necessary the reductionistic-biological medical model nearly ubiquitous everywhere else may be, it is not sufficient. I’m very glad Kirmayer is bringing up Daniel Dennett and his work on heterophenomenological methods in the clinical context as well, not because it’s the end-all be-all, but because it orients what have historically been difficult and controversial debates  in an accessible, easy to read, reasonably pragmatic way. He is also doing good work in looking at how psychiatry gets it’s norms, methods, and foundational orientations, prompting him to call for phenomenological investigations in psychiatry. What a timely effort! I can’t help but feel the DSM-V was panned before it was published in 2013 (and not just by angry people with Asperger’s or Scientologists) because this phase of psychiatry may be running out of steam. The mapping between biological mechanisms to the myriad ways individual people in various cultures live out their emotional pain and existential struggles isn’t good enough.  The ontology or foundational ideas about a psychiatric patient must reference existential reality: the meaning of embodiment and how one’s experience brings forth a lived world, while the ontology of neuroscience is based on genes, proteins, signals, action potentials, circuits, modules, information-processing, and maybe even dynamical systems. Current psychiatry seems to me to be inadequately addressing the foundational problem of how to map these domains. All the genome-wide association studies, connectome diagrams, and brain imaging data in the world aren’t enough to create diagnostic categories that cluster the lived meaning, experiences and embodiment of similar bipolar or schizophrenic patients together, and that of dissimilar patients apart. There really is alot of applied work needing to be done on how to model the cognition of patients whose disorders manifest as disturbances of body cognition or existential crises (here’s my version, dealing with heartbeat perception). Moreover, foundational investigations into the ontology of psychiatry may very well provide a needed stimulus to get psychiatry out of it’s current funk betwixt and between medical humanism as a healing art, and bio-reductionistic techno-medicine. Overall I am convinced clinical neurophenomenology is a vital and largely new area, despite the pioneering efforts of the neuropsychiatrist Erwin Straus and the more recent work of neurologists such as  Oliver Sacks and Antonio Damasio. The lodestar of clinical neurophenomenology seems to me to be Varela’s idea of a mutual constraining and mapping between data from lived, embodied phenomenology and theories based on cognition and neuroscience. There is a more about Kirmayer at http://www.mcgill.ca/trauma-globalhealth/people/canada/kirmayer/

Advertisements

Is pain where you feel it in the body, or in the brain? Neurophenomenology and the spatial aspect of nociception

body knowledge, clinical neurophenomenology, embodiment, interoception, introspection, introspective accuracy, medicine, pain, physiology, symptom report accuracy, symptom reports, visceral perception

Pain is interesting, salient, mysterious. It may feel like it is in one specific place in or on the body. It may feel diffuse, with gradations, or it may seem referred from one area to another. What is happening in the brain and in the body as these spatial aspects of pain are experienced? How much of the causation of pain occurs where we feel it, and how much occurs in the brain? Below is a series of probes and thinking aloud about where pain is, with speculations to stimulate my thinking and yours.  I’m not a “pain expert”, nor a bodyworker that heals clients, nor a physiologist with a specialization in nociception, but a cognitive scientist, with clinical psychology training, interested in body phenomenology and the brain.  Please do post this essay to Facebook, share it, critique, respond, and comment (and it would be helpful to know if your background is in philosophy, neuroscience, bodywork, psychology, medicine, a student wanting to enter one of these or another field, etc). Pain should be looked at from multiple angles, with theoretical problems emphasized alongside clinical praxis, and with reductionistic accounts from neurophysiology juxtaposed against descriptions of the embodied phenomenology and existential structures.  As I have mentioned elsewhere, it is still early in the history of neurophenomenology…let a thousand flowers bloom when looking at pain. We need data, observations, insights and theories from both the experience side as well as the brain side. Francisco Varela aptly described how phenomenology and cognitive neuroscience should relate:

“The key point here is that by emphasizing a codetermination of both accounts one can explore the bridges, challenges, insights, and contradications between them. Both domains of phenomena have equal status in demanding full attention and respect for their specificity.”

We all know what pain is phenomenologically, what it feels like, but how to define it? The International Association for the Study of Pain offers this definition: “an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage.” Of particular interest to neurophenomenology and embodied cognitive science is their claim that “activity induced in the nociceptors and nociceptive pathways by a noxious stimulus is not pain, which is always a psychological state.” Good that they do not try to reduce the experience of pain to the strictly physiological dimension, but I wonder how Merleau-Ponty, with his non-dualistic ontology of the flesh would have responded. Pain seems to transgress the border of mind and body categories, does it not? I am slowly biting off chucks of the work on pain at the Stanford Encyclopedia of Philosophy. Lots of provocative angles, including this one:

“there appear to be reasons both for thinking that pains (along with other similar bodily sensations) are physical objects or conditions that we perceive in body parts, and for thinking that they are not. This paradox is one of the main reasons why philosophers are especially interested in pain.”

Right now I am particularly interested in the spatial aspect of where pain seems to be, what I might label the spatial phenomenology of nociception. When I introspect on aching parts of my feet, it seems as if the pain occupies a volume of space. Using manual pressure I can find places on my feel that are not sore, right next to areas that are slightly sore, which are in turn near focal areas of highest pain. It seems as if the pain is locatable “down there” in my body, and yet what we know about the nociceptive neural networks suggests the phenomenology is produced by complex interactions between flesh, nearby peripheral nerves, the central nervous system, and neurodynamics in the latter especially. A way of probing this this would be to examine the idea that the pain experience is the experiential correlate of bodily harm, a sort of map relating sensations to a corresponding nerve activated by damage to tissue. So, is the place in my body where I feel pain just the same as where the damage or strain is? Or, Is pain caused by pain-receptive nerves registering what is happening around them, via hormonal and electrical signals? Or is pain actually the nerve itself being “trapped” or damaged, yet in a volume of undamaged tissue one can feel hurts? Could the seeming volume of experienced pain-space be a partial illusion, produced by cognizing the tissue damage as some place near or overlapping with yet not spatially identical to where the “actual” damage is, in other words a case of existential-physiological discrepancy? One scenario could be, roughly, that pain “is” or “is made of” nerves getting signals about damage to tissue; another would be that pain “is” the nerves themselves being damaged or sustaining stress or injury. Maybe pain involves both? Maybe some pain is one, or the other? In terms of remembering how my heel pain started, it’s not so easy, but I love to walk an hour or two a day, and have done so for many years. I recall more than ten years ago playing football in the park, wearing what must have been the wrong sort of shoes, and upon waking the next day, having pretty serious pain in my heel. Here are some graphics that, intuitively, seem to map on to the areas where I perceive the pain to be most focal:

from bestfootdoc.com

from bestfootdoc.com

from setup.tristatehand.com

from setup.tristatehand.com

from plantar-fasciitis-elrofeet.com

from plantar-fasciitis-elrofeet.com

If I palpate my heel, I become aware of a phenomenologically complex, rich blend of pleasure and pain. I crave the sensation of pressure there, but it can be an endurance test when it happens. Does the sensation of pressure that I want reflect some body knowledge, some intuitive sense of what intervention will help my body heal? How could this be verified or falsified? It is not easy to describe the raw qualia of pain, actually. I can describe it as achey and moderately distressing when I walk around, and sharp upon palpating. Direct and forceful pressure on the heel area will make me wince, catch my breath, want to gasp or make sounds of pain/pleasure, and in general puts me in a state of heightened activation. But I love it when I can get a therapist to squeeze on it, producing what I call “pain-pleasure”:

from indyheelpaincenter.com

from indyheelpaincenter.com

This diagram below helps me map the sensations to the neuroanatomy. We need to do more of this sort of thing. This kind of representation seems to me a new area for clinical neurophenomenological research (indeed, clinical neurophenomenology in general needs much more work, searching for those terms just leads back to my site, but see the Case History section in Sean Gallagher’s How the Body Shapes the Mind).

from reconstructivefootcaredoc.com

from reconstructivefootcaredoc.com

What is producing the pain-qualia, the particular feeling? Without going too far into varying differential diagnosis, it is commonly attributed to plantar fasciitis.  There the pain would be due to nociceptive nerve fibers activated by damage to the tough, fibrous fascia that attach to the calcaneus (heel bone) being strained, or sustaining small ripped areas, and/or local nerves being compressed or trapped. A 2012 article in Lower Extremity Review states that “evidence suggests plantar fasciitis is a noninflammatory degenerative condition in the plantar fascia caused by repetitive microtears at the medial tubercle of the calcaneus.” There are quite a few opinions out there about the role of bony calcium buildups, strain from leg muscles, specific trapped nerves and so forth, and it would be interesting to find out how different aspects of reported pain qualia map on to these. Below you can see the sheetlike fascia fiber, the posterior tibial nerve, and it’s branches that enable local sensations:

from aafp.org

from aafp.org

Next: fascia and the innervation of the heel, from below:

from mollyjudge.com

from mollyjudge.com

Another view of the heel and innervation:

from mollyjudge.com

from mollyjudge.com

Below is a representation of the fascia under the skin:

from drwolgin.com

from drwolgin.com

There is a very graphic,under the skin, maybe not SFW surgeon’s-eye perspective on these structures available here. Heel pain turns out to be very common, and is evidently one of the most frequently reported medical issues. Searching online for heel pain mapping brings up a representation purportedly of 2666 patients describing where they feel heel pain: heel pain mapping I can’t find where this comes from originally and can’t speak to the methodology, rigor, or quality of the study, but the supposed data are interesting, as is the implicit idea of spatial qualia mapping:  the correspondence of experienced pain to a volume of space in the body. It also quite well represents where the pain is that I feel. The focal area seems to be where the fascia fibers attach to the calcaneus, an area that bears alot of weight, does alot of work, and is prone to overuse. So, where is the pain? Is it in the heel or the brain? Is it in the tissue, the nerve, or both? Is there a volume of flesh that contains the pain? I am going to have to think about these more, and welcome your input. What about the central nervous system that processes nociceptive afferents coming from the body? A good model of pain neurophenomenology should involve a number of cortical and subcortical areas that comprise the nociceptive neural network: -primary somatosensory cortex (S1) and secondary somatosensory cortex (S2): -insula -anterior cingulate cortex (ACC) -prefrontal cortex (PFC) -thalamus Here are some representations of the pain pathways, or the nociceptive neural network:

from Moisset and Bouhassira (2007) "Brain imaging of neuropathic pain"

from Moisset and Bouhassira (2007)

Moisett el (2009)

Moisett el (2009)

 

from Tracey and Mantyh (2012)

from Tracey and Mantyh (2012)

Broadly speaking, pain seems to be generated by tissue damage, inflammation, compromising the integrity of tissue, stress on localized regions, and so forth being processed by peripheral afferent pain pathways in the body, then phylogenetically ancient subcortical structures, and then the aforementioned cortical regions or nociceptive neural network.  As I have mentioned many times, making a robust account of how various regions of the brain communicate such that a person experiences qualia or sensory phenomenology will need to reference neurodynamics, which integrates ideas from the physics of self-organization, complexity, chaos and non-linear dynamics into biology.  It is gradually becoming apparent to many if not most workers in the cognitive neurosciences that there are a host of mechanisms regions of the brain use to send signals, and many of these are as time dependent as space dependent. Michael Cohen puts it thusly: “The way we as cognitive neuroscientists typically link dynamics of the brain to dynamics of behavior is by correlating increases or decreases of some measure of brain activity with the cognitive or emotional state we hope the subject is experiencing at the time. The primary dependent measure in the majority of these studies is whether the average amount of activity – measured through spiking, event-related-potential or -field component amplitude, blood flow response, light scatter, etc. – in a region of the brain goes up or down. In this approach, the aim is to reduce this complex and enigmatic neural information processing system to two dimensions: Space and activation (up/down). The implicit assumption is that cognitive processes can be localized to specific regions of the brain, can be measured by an increase in average activity levels, and in different experimental conditions, either operate or do not. It is naïve to think that these two dimensions are sufficient for characterizing neurocognitive function. The range and flexibility of cognitive, emotional, perceptual, and other mental processes is huge, and the scale of typical functional localization claims – on the order of several cubic centimeters – is large compared to the number of cells with unique physiological, neurochemical, morphological, and connectional properties contained in each MRI voxel. Further, there are no one-to-one mappings between cognitive processes and brain regions: Different cognitive processes can activate the same brain region, and activation of several brain regions can be associated with single cognitive processes. In the analogy of Plato’s cave, our current approach to understanding the biological foundations of cognition is like looking at shadows cast on a region of the wall of the cave without observing how they change dynamically over time.” But what of the original question? Is pain where you feel it in the body, or in the brain? It seems to me the answer must be both.  The experience of pain being localized there or a little on the left is a product of local tissue signals and receptor activation, which produces peripheral afferent nerve firing, which gets processed by spinal afferent neurodynamics, brainstem activation, thalamic gating, and then somatosensory, insular, anterior cingulated, and prefrontal cortical regions. Yet the real model of pain, one that invokes mechanisms and causes, remains elusive. And a good model of pain must account for the possibility of pain without suffering as well! For now, what I can offer are probes to get us speculating, thinking critically, and eventually building a clinical neurophenomenology of pain. If that interests you, by all means get involved.

What do clinicians come to know about their patient’s heart sensations?

Uncategorized

What do clinicians come to know about their patient’s heart sensations? This is not a simple question, as it simultaneously looks at patients as people with bodily experiences, but also as humans understood as systems, as a sort of living machine. What is more intimate than our heart-beating, a familiar yet mysterious sensation we know to be at the very basis of our ongoing experience? Feeling a change in the rhythm or intensity of this fundamental aspect of our embodied existence can be very worrisome. Should clinicians believe patients who complain of cardiac rhythm changes? How accurate are people at detecting medically important heart-beat fluctuations? How should clinicians understand the relationship between symptoms as reported by the patient, and underlying physiological processes? These are complex and multifaceted issues, requiring nimble clinicians who integrate scientific knowledge as well as intuition about what the patient is experiencing bodily. Clinicans develop knowledge of their own bodies through life, and then are required to learn complex anatomical, physiological, and etiological concepts they will use to interpret their patient’s symptom reports. What patients have to say about what is happening in their bodies must be taken seriously, but not necessarily believed. The interrelated problems of how clinicians interpret patient verbal reports, reason about the relation between these reports compared to measurements and scientific models, and then make judgments about the patient’s accuracy in knowing about their own bodies are topics well worth honing in on, and to my knowledge, not throughly explored from a neurophenomenological perspective.

These acts of clinician cognition concerning their patient’s symptoms are framed by an evolving social and professional context. Modern medicine, like the Roman god Janus, stands two-faced, towards healing as an art, but also towards scientific models of disease. In the current era, what is known as “evidence-based medicine” requires an important shift in how clinicians operate, from historically rather unfettered individual judgments in some contexts, to increasingly accepting consensus-developed guidelines formulated from reviews of previous findings. Clinicans who have with great effort developed the ability to intuit diagnoses may have to defend their familiar constructs, criteria, heuristics, and practices if these are not bolstered by peer-reviewed studies, randomized clinical trials, systematic reviews, Bayesian statistical approaches to clinical problem solving, meta-analysis of previous data, and effectiveness metrics. Medical organizations can mandate “best practices” of patient care, “gold standards” of cost-effectiveness for ordering certain tests, references to efficacy criteria that must be satisfied before a program of treatment is established, and more. This ongoing process is transforming medicine, requiring that the traditional art of diagnosis based on years of education and experience be integrated with operationalized definitions, committee-approved metrics, and greater formalization, thus constraining individual opinion and practices in favor of organization-mandated standard operating procedures. Can symptoms based on an individual’s embodied experience be given proper attention in this brave new world of medicine?

I hope that more researchers would address the clinical aspects of neurophenomenology. This is a relatively new and undeveloped area. While William James and Erwin Straus were clinicians, as is Antonio Damasio, other pioneers such as Maurice Merleau-Ponty and Francisco Varela backgrounded medical concerns somewhat (however, if you are unaware of Varela’s haunting work at the end of his life “Intimate Distances -Fragments for a Phenomenology of Organ Transplantation“, it is a must-read.) Shawn Gallagher has made an excellent synthesis of philosophy and clinical studies in “How the Body Shapes the Mind“, a work that bears greater attention from the small community of neurophenomenology researchers.

For my part, I shall focus in on a particular area, palpitations, where changes towards operationalizing and standardizing the definition of “clinically significant” symptoms are occurring, with the aim of modeling the relationship between patient symptom reports and “significant” arrhythmias as revealed on ECG measurements. I will especially focus on how the predictive utility and accuracy of the reports can be operationalized, and attempt to represent for one domain how patients’ verbalization of their phenomenological state can be “mapped” onto measurements of cardiac rhythm abnormalities.

How to operationalize the “body-knowledge” construct so it can be analyzed and measured

Uncategorized

I started using the term “body-knowledge” a few years back as a way to label the extent to which people can accurately report symptoms or interior sensations. It is not as of 2010 a popular term. The earliest citation of the term I know of is from a clinical neurology paper by Sirigu, Grafman, Bressler, and Sunderland, (1991): Multiple representations contribute to body knowledge processing: Evidence from a case of autotopagnosia

“Body knowledge” does quite not have the same meaning as “embodied cognition”, “body image”,”body schema”, “interoception”, “visceral perception”, or even “body cognition”, though there is considerable overlap. I typically use the concept body-knowledge to emphasize the verbal reporting of internal states. My epistemology teacher years ago taught me a great idea:

To know something, you have to know that you know it, and to know that you know it, you have to be able to say it.

I wouldn’t defend that as the end-all be-all theory of knowledge, but it works as a heuristic at the least. For now, I use “body-knowledge” to refer to how well people can know and verbally report on what is happening to their physiological states.

To analytically probe this construct, I started looking very deeply at a particular domain: symptom reporting about cardiovascular processes. I have found some useful results from earlier studies that serve as a guide to help approximate how accurate people are when they feel and report palpitations: their heart is racing, they feel irregular beats, heart thumping or pounding, skipped beats, and so forth. Evidently a fair amount of the time people suffering from panic disorder or anxiety “cognize” otherwise benign sensations and report heart problems, and such false positives adds a great deal of expense to the healthcare system.

Symptom report accuracy is a largely unexplored area for the young field of neurophenomenology: how much of what is happening inside our bodies is accessible to our minds? Very little of the existing neurophenomenology literature deals with these issues.

How can the “body-knowledge accuracy” construct be operationalized, analyzed and measured? For the particular domain of palpitations reporting, here are some useful core metrics:

From ‘The Validity of Bodily Symptoms in Medical Outpatients,” (Barsky, 2000) Chapter 19 in The Science of Self Report (Stone, A, ed): -When patients complaining of palpitations undergo 24-hour, ambulatory, electrocardiographic monitoring, 39% to 85% manifest some rhythm disturbance; the vast majority of these arrhythmias are benign, clinically insignificant, and do not merit treatment). Although as many as 75% of these patients with arrhythmias report their presenting symptom during monitoring; in only about 15% of cases do these symptom reports coincide with their arrhythmias.

From Barsky, Ahern, Delamater, Clancy & Bailey (1997): -145 consecutive outpatients referred to an ambulatory electrocardiography (Holter) laboratory for evaluation of palpitations were accrued, along with a comparison sample of 70 nonpatient volunteers who had no cardiac symptoms and no history of cardiac disease. A symptom was considered accurate when it followed within 30 seconds after any demonstrated arrhythmia.

-average positive predictive value (PPV)… is equal to the number of reported symptoms that were preceded by an arrhythmia divided by the total number of symptoms reported (true positives / [true positives + false positives]).

-Ninety-nine palpitation patients (68%) reported at least one palpitation during monitoring. Among those patients who were symptomatic, the mean number of diary symptoms reported in 24 hours was 3.7. The mean PPV for all symptom reports among palpitation patients was 0.399, compared with a mean PPV = .118 for the nonpatient volunteer sample (p = .01).

-the palpitation descriptors most likely to be accompanied by electrocardiographic abnormalities are heart stopping, fluttering, and irregular heartbeat. The least predictive descriptive terms used by the patients were racing and pounding.

-34% of the symptomatic palpitation patients and 11% of the asymptomatic comparison subjects were classified as accurate reporters

History of the development of neurophenomenology pt.II-cognitivism, neurology, and psychology

cognitive science, Francisco Varela, medicine, neurophenomenology

(Part I is here, and part III is here)

In certain respects, development of the view that embodied experience is crucial to understanding the mind and brain reached a nadir in the period after World War II, at least within psychology. Behaviorism had redefined psychology as an “objective” science with no need to refer to consciousness or phenomenology.  There was continuation of phenomenological research from the German gestalt psychologists, but it was not until after World War II that clinically-oriented humanistic psychology explicitly articulated the need for more holistic, “person-centric” perspectives emphasizing existential concerns: the search for meaning, the experience of health and illness, emotions, and consciousness.

While many philosophers in Europe continued to develop phenomenology, Contintental philosophy was increasingly concerned with logical positivism, which emphasized that many traditional problems could be solved through formal logic, and those not approachable in this way were suspect.  Formal logic reached a apotheosis  of sorts with the advent of computers, a class of systems having internal memory storage and symbolic-logical operations, and with them came a number of seminal figures that transformed models of mind and brain. In particular,  Norbert Weiner‘s (1894-1964) meta-discipline of cybernetics, Claude Shannon‘s (1916-2001) information theory, Alan Turing‘s  (1912-1954) and John von Neumann‘s (1903-1957) canonical work on computation, Jean Piaget‘s (1896-1980) theories of the sequential process by which infants and small children learn language and perception in stages, all resulted in an explosion of new perspectives on cognition, language, memory, perception, problem-solving.  By the late 1950’s the overlapping field(s) of artificial intelligence (AI) and cognitive science got the attention of researchers in psychology, linguistics, philosophy of mind, neuroscience, anthropology, therapy, and organizational management. Herbert Simon (1916-2001) modeled human problem solving in the face of uncertain information, and co-developed what became known as general systems theory, and along with Allen Newell (1927-1992) developed automated theorem-provers and chess-playing programs. Noam Chomsky‘s investigation of the symbolic logical rules underlying grammar and syntax generated an attack on environment-produced behaviorist theories of language, the flaws of which dramatically came to a head in the North Texas Symposium on Language in 1959.

While the door to explaining psychological phenomena in terms of mental categories and concepts had been re-opened, these new models generally formulated explanations in terms of impersonal information-processing and rule-based symbolic-logical theories of non-conscious aspects of the mind. These new “cognitivists” had absorbed certain scruples from the behaviorists, and typically disdained concepts such as “consciousness” in their models of the mental processes. Cognitivism remained “system-centric”, not person or body-centered, and focused on reducing mental activity to computational,information-processing and representational processes. There was a general lack of interest in using various first-person, introspection-based methods such as those of William James, or Edmund Husserl, though cognitivism and behaviorism alike asked subjects for verbal reports within experiments.

However, clinical neurologists continued to advance an approach to psychological and cognitive phenomena that reflected a richer and broader understanding of the mind. The First and Second World Wars provided a huge pool of subjects with specific localized lesions and corresponding deficits in memory, speech, motion, etc.  The Russian neurologist Alexander  Luria (1902-1977)  spent about 30 years with a patient, the soldier Zazetsky, who sustained a bullet wound to his left occipito-parietal cortex.  Zazetsky’s struggle to use journal writing cope with being unable to remember new events is described in  The Man With a Shattered World (1972) as a fight “to live, not merely exist.” Zazetsky wrote: “I’m in a fog all the time…. All that flashes through my mind are images…hazy visions that suddenly appear and disappear.”

a7f3f96642a07af2db1e8110.L._AA240_

Taking the long view of the development of a science of the mind, the praxis-driven demands of the clinic balanced somewhat the behaviorist  and cognitivist disavowal of consciousness as a research topic. Focusing on the struggle of a brain-injured patient to live meaningfully meant that at least a small part of the ever-more fragmented field of psychology overtly or implicitly emphasized embodied and conscious aspects of cognition.  It should be emphasized that a division of labor was in effect. Clinicians deal with people, while cognitive scientists deal with systems. As neurologists and psychologists published case studies,  the more theoretically minded extrapolated from these reports to highlight an understanding  of human mental functioning that did not exclude consciousness and the existential, personal, meaningful dimensions of experience that are grounded in the lived body.

Across the ocean, in France, while structuralism began to dominate intellectual life after World War II, developments in phenomenological research continued apace. Most imprtantly was the philosopher Maurice Merleau-Ponty (1908-1961) analyzed and critqued the phenomenology of the philosopher/mathematician Edward Husserl. Foregoing Husserl’s hugely ambitious project of project of providing the most rigorous epistemological foundation possible for science and philosophy through investigations into experience, Merleau-Ponty attempted to reintegrate the penetrating Husserlian observation analysis of conscious phenomena into the structure of how consciousness is grounded and lived out bodily.

Phenomenologist Maurice Merleau-Ponty

Phenomenologist Maurice Merleau-Ponty

This change of emphasis allowed a bridge towards grasping how the lived body is related to the objectively-described physical body of physiology, behaviorism, and brain science. Works such as The Structure of Behavior and The Phenomenology of Perception are tantalizing hints that had Merleau-Ponty lived a long life, neurophenomenology might have emerged decades before the 1990’s. Merleau-Ponty articulated a post-Cartesian view of the mind that subverted the subject-object split. He used the notion of co-constitutionality to grapple with the enigmatic coupling and engagement of embodied mind to the world.  Two quotes from The Phenomenology of Perception are appropos (pg. 407):

Inside and outside are inseparable” (pg. 407)

Insofar as I have hands, feet; a body, I sustain around me intentions which are not dependent on my decisions and which affect my surroundings in a way that I do not choose” (pg. 440)

51OpeN9kQQL

Those psychiatrists and psychologists who attempted to apply the insights of Husserl, Martin Heidegger (1889-1976) and Merleau-Ponty especially developed what became known as phenomenological psychology. Heidegger gave lectures to physicians about ontology,while Ludwig Binswanger (1881-1966) and Medard Boss (1903-1990) attempted to apply his analysis of dasein (“being-there”) to clinical contexts. Phenomenological psychology showed a pronounced clinical influence from a key synthesizer of the neurological and phenomenological research traditions:  the neuropsychiatrist Erwin Straus (1891-1975, who was possibly the first neurophenomenologist.

Erwin Straus, MD: the first neurophenomenologist?

Erwin Straus, MD: the first neurophenomenologist?

He is quoted in Man, Time, and World: Two Contributions to Anthropological Psychology (1982) as stating:

The physiologist, who in the everyday world relates behavior and brain, actually makes three kinds of things into objects of his reflection: behavior, the brain as macroscopic formation, and the brain in its microscopic structure and biophysical processes. From the whole-the living organism-the inquiry descends to the parts: first of all to an organ-the brain-and finally to its histological elements. Statements concerning the elementary processes acquire their proper sense only in reference back to the original whole

Probably the best known exponent of a phenomenogical approach to clinical psychology and psychiatry was RD Laing (1927-1989), who in 1965 wrote a classic case-study analysis of the experience of schizoids in The Divided Self: an existential study in sanity and madness. In it he describes one patient:

“Julie’s self-being had become so fragmented that she could best be described as living a death-in-life existence in a state approaching chaotic nonentity.

In Julie’s case, the chaos and lack of being an identity were not complete. But in being with her one had for long periods that uncanny ‘praecox’ feeling described feeling’ described by the German clinicians, i.e. of being in the presence of another human being and yet feeling that there was no one there. Even when one felt that what was being said was an expression of someone, the fragment of a self behind the words or actions was not Julie. There might be someone addressing us, but in listening to a schizophrenic, it is very difficult to know ‘who’ is talking, and it is just as difficult to know ‘whom’ is addressing.”

In the 1970’s and early 1980’s, neurologists like Oliver Sacks continued in the neuropsychological tradition of Luria, and documented the  existential struggles of patients with brain disorders. In 1970  he produced an eminently readable,  phenomenologically rich classic of neuropsychology: The Man Who Mistook His Wife for a Hat.  He wrote persuasively that while there are indeed computer-like aspects of the brain, the cognitive, computationalist or information-processing model nonetheless does not address the full spectrum of human psychological reality (pg. 20):

But our mental processes, which constitute our being and life, are not just abstract and mechanical, but personal, as well.”

1834-1

The European-flavored, humanistic field of phenomenological psychology (also called existential-phenomenological psychology)  offers an alternative for researchers dissatisfied with mechanistic cognitivitism, behaviorism and physiological psychology. However, as far as I can tell,  after the passing of Erwin Straus, phenomenological psychology has had little or no interest in cognitive neuroscience. The major exception to this I can find was in 1981, when phenomenological/biophysiological psychologist Donald Moss and cognitive neuroscientist Karl Pribram each wrote fascinating essays on comparing brain science and phenomenology  in the collection The Metaphors of Consciousness (Valle and von Eckartsberg, Eds). This is of historical interest as an early instance of an explicit dialoug between neuroscience and existential-phenomenology.

92ebe03ae7a045d335c3d110.L._AA240_

Pribram’s essay “Behaviorism, Phenomenology, and Holism in Psychology” pointed to the need for a broader, phenomeologically and neurobiologically informed  approach to psychology (pg. 142:

“But there are limits to understanding achieved solely through the observation and experimental analysis of behavior. These limits are especially apparent when problems other than overt behavior are addressed, problems related to thought or to decisional processes, to appetive and other motivational mechanisms, to emotions and feelings, and even to images and perception”.

and (pg. 146):

“Existential-phenomenological psychology has not, up to now, been very clear in it’s methods. I suggest that multidimensional analyses (factor analysis, principle components analysis, stepwise discriminant analysis) might serve well as tools to investigate the structure of experience-in-the-world.”

Moss lucidly analyzed the similarities and divergences between neuroscience and existential-phenomenology  in a essay entitled “Phenomenology and Neuropsychology” (pg.159):

“Pribram points to the role of the brain processes in”constructing” the world as perceived. Yet existential-phenomenology has also emphasized the “constituting functions”of the ego (Husserl), the constituitive role of the lived body (Merleau-Ponty), and the role of the human body and upright posture in articulating the world of sensory experience (Straus). Thus, neither school of thought naively recognizes a reality per se unaffected by the presence and condition of the organism. ”

Such exchanges occurred on the margins of mind-science. By the 1960’s, the largely cold-war funded research program of Artificial Intelligence (A.I) and growing interest in cognitive or information-processing approaches to problems in psychology etc. had produced a “cognitive revolution”.  Some brave cognitivists even made use of introspective techniques (though not without drawing fire from behaviorists). Herbert Simon asked his subjects to verbally report on how they solved logic-puzzles, much to the chagrin of the remaining orthodox behaviorists. The renewal of mentalistic language and willingness to freely use data from introspection and verbal reports from subjects  about how they solved logic problems was a robust challenge to the behaviorists, but over time a rapprochement ensued.

But what really allowed the scientific study of consciousness and experience to re-emerge was the success of theoretical and laboratory neuroscience. EEG data had been produced for years with good temporal but limited spatial resolution, but in the 1970’s and 1980’s an alphabet soup of new imaging technologies (CAT, PET, MRI, and recently MEG) allowed neuroscientists to better “peek inside” the living brains of subjects in experiments. Progress in molecular biology, genomics, and biophysics in the postwar West allowed curious researchers to formulate models of emotions in chemical terms, such as the finding of endogenous opiates (or endorphins) and their receptors in the brain. The finding that nerve fibers connect with the organs of the immune system helped ground theories of the effect of emotions and beliefs on health, leading to the interdiscipline of psychoneuroimmunology. A growing industry to synthesize pharmaceutical products based on the molecular structure of receptor proteins has led to neuropharmacology and neuropsychopharmacology.

Some brain researchers looking for theoretical models of the mind found the information-processing/computationalist approach of the cognitivists limiting in understanding emotions and experience. Cognitive science itself had been rocked from its early (late 1950’s-early 1960’s) success to the gradual realization that many aspects of mind are not easily characterized as formal-logical, rule-based systems, as had been predicted by the phenomenologically-informed philosopher Hubert Dreyfus (1972) in What Computers Can’t Do, where he argued that rule-based, symbolic-logical, representationalist models of mind and language fail to deal with the radically embodied nature of cognition. This was hotly rejected by prominent AI researchers, but later influenced Terry Winograd, among others.

images1

Mostly the insights of clinical neurologists and phenomenological psychologists were ignored in postwar cognitive science, which had a great overlap with computer science and Artificial Intelligence (A.I). Indeed, cognitivists and AI engineers might profess agnosticism about the neurobiology of the mind, viewing  brain “hardware” as the domain of other specialists. In the late 1950’s and through the 1960’s, cognitive science and Artificial Intelligence seemed to have revolutionary new insights. AI as engineering of useful artifacts overlapped with AI as cognitive modeling. An early era of exciting optimism eventually gave way to slow progress on “general purpose” problem solving.  The limitations of their symbolic-logical, information-processing, and computationalist approach led others to develop the hybrid field of cognitive neuroscience. Sometimes there were interesting discrepancies between the two: onetime “pure” cognitivist Stephen Kosslyn performed neuroimaging experiments on subjects who were asked to rotate mental objects. According to John McCrone’s report of Kosslyn’s work in Going Inside: A Tour ‘Round a Single Moment of Consciousness, the resulting pattern of distributed activity across disparate brain regions was difficult to reconcile with the neat schematic Kosslyn had developed as an abstract cognitive model possessing a few modules for accomplishing aspects of the rotation operation. This lends credence to those who propose that cognitive science must be much more thoroughly integrated with the “gory details” of neuroscience, with the neural networks/connectionist camp serving as a conceptual bridge fro brain to symbols and representations. Over time, the lack of interest in biology and “implementation agnosticism” of some computationalist cognitive scientists has given way to modern cognitive neuroscience. A movement in the 1980’s to reform cognitive science and artificial intelligence along biologically-inspired and “subsymbolic” lines known as connectionism, artificial neural-networks, and parallel-distributed processing splits cogntivism to this day.

A pathbreaking  (and for some, puzzling*) book appeared in the second half of the 1980’s that seemd to point the way to a synthesis of neurobiology, cognitivism, computer science, and phenomenology: Understanding computers and cognition: a new foundation for design by AI and language-processing expert Terry Winograd and Fernando Flores:

9780201112979

The book proposed a phenomenologically-grounded understanding of how people in real-world environments use systems that software designers build. It took  inspiration from Humberto Maturana and Francisco Varela‘s  idea of autopoesis, a cybernetics-inspired, dynamical theory of organisms self-organizing  their own  structure by regenerating parts and by being coupled to their environment, until death.  The brains of creatures do not represent features (such  as colors) of objects external to them as cognitivists typically assume.  Rather, each ecologically-situated animal brings forth or co-constitutes a perceived world through evolutionarily-selected sensorimotor systems.  Autopoesis is a sort of post-Cartesian biology, and  Maturana and Varela described it in 1981 as:

“a network of processes of production (transformation and destruction) of components which: (i) through their interactions and transformations continuously regenerate and realize the network of processes (relations) that produced them; and (ii) constitute it (the machine) as a concrete unity in space in which they (the components) exist by specifying the topological domain of its realization as such a network.”

While a cognitivist might recognize a consonance with cybernetics here, abandoning representationalism is very difficult for some. What other bridging concepts are there to relate brain and mind events? This is still an open issue.

As it turned out, a sophisticated alternative to cognitivism was on the way: Walter Freeman, Francisco Varela, and others have offered a post-representationalist approach to consciousness, cognition, and the brain based in dynamical systems theory. The undercurrents of dissatisfaction with  understanding the mind as information-processing, rule-based symbolic  logical procedures, and “computations over representations”  emerged in the 1990’s  as embodied cognitive science and neurophenomenology.

(Part I is here, and part III is here)

*-when asked about Understanding Computers and Cognition, a doctoral student in psychology I knew could only shake his head, raise his eyebrows,  and say “that’s a weird book”

the legacy of Cartesian “objectivity” makes it hard to understand patient verbal reports

clinical neurophenomenology, embodiment, introspection, medicine, symptom reports

Psychiatrist Allan Beveridge (2002) hones in on a facet of the patient-physician relationship relevant to neurophenomenology: the over-adoption in medicine of the scientific attitude of objectivity towards phenomena. While entirely appropriate in the many research contexts, this may make understanding the personal body-knowledge of the patient more difficult (pg. 101):

In the mental state examination, a standard method of describing the clinical encounter is to contrast the patient’s supposedly ‘subjective’ account with the doctor’s ‘objective’ description. In this model, the doctor is granted a privileged position: the clinician’s perspective is taken to be superior to that of the patient. The doctor’s objective approach is considered neutral, scientific and representing the truth of the matter. In contrast, the patient’s subjective report is regarded as unreliable, distorted and potentially false. The lowly status of the subjective perspective is further emphasized by the frequent use of the accompanying prefix, merely. On reflection, this dichotomy is an extraordinary one. It is held that the doctor is an authority on the patient’s inner experiences. The doctor knows more about how the patient is thinking and feeling than the patient him-/herself

This “scientific” medical stance towards patient subjective reporting is consistent with the Cartesian heritage of the sciences of the mind. The implications, hidden or unexamined commitments should be critically examined if the verbal reports about patient body-states are to be better grasped by science and medicine. To the extent cognitive science, psychology, neuroscience, and medical fields uncritically base their methodologies on unexamined premises, certain problems may appear just due to the very choices of what is considered “data”. The relegation of patient verbal reports to the category of “merely subjective” allows for Cartesian assumptions about cognition to create difficulties at the outset of any research project attempting to model personal knowledge of the body. It may be that the very categories of subject and object, or scientific knowledge vs. subjective or “folk psychological” naïve theories of the body, present foundational problems for understanding how neurophysiological processes relate to verbally reportable knowledge of the body. But as a practical matter, health care professionals must simply cope with patient statements as one more data source (Ersser and Atkins, 2000, pg. 68):

Clinical decisions involve information of a necessary type and quality. Professionals take account of both objective and subjective data during the clinical assessment process to decide on a patient’s health care need and care plan. The difficulty lies in professionals understanding how best to reconcile their objective perspective with that of the patient, when formulating clinical judgments

Before a doctor revives technical training, he or she is a person with experiences of health and sickness. The verbal reports of patients are interpreted by professionals with their own history of embodiment. To what extent does their personal body knowledge consciously or unconsciously affect their clinical intuition about the accuracy of patient verbal reports? Does expert knowledge of the body gained from studying anatomy and physiology allow for better knowledge of one’s own body? Such questions point to our current rather murky understanding of embodied cognition, underscoring the need for models capturing richer, more subtle aspects of experience, cognition, and brain.

Gallagher and Coles on body schema vs. body image and the body percept

clinical neurophenomenology, embodiment, medicine

The philosopher Shaun Gallagher has collaborated with neurologist Jonathan Coles on the significance of patients with enigmatic body-knowledge problems (Gallagher and Coles, 1998).  Gallagher has analyzed this clinical data in the light of phenomenology and neuroscience, and has  an essential book  for anyone interested in neurophenomenology: How the Body Shapes the Mind

31Ks9iZwtpL

Gallagher is formulating a sophisticated take on embodied cognition that redresses the relative lack of attention by Varela and others to clinical studies of body knowledge disorders .  I have believed for some years that the wealth of neurological case studies  presenting puzzling data needs more focus in neurophenomenology. Since the early 20th century, numerous patients with body knowledge based disorders and pathologies have come to light, leading to the notion of a body schema (Head and Holmes, 1911), which Gallagher and Coles (p.372) say involves:

“…a system of motor capacities, abilities, and habits that enable movement and the maintenance of posture. The body schema is not a perception, a belief, or an attitude. Rather, it is a system of motor and postural functions that operate below the level of self-referential intentionality, although such functions can enter into and support intentional activity. The preconscious, subpersonal processes carried out by the body- schema system are tacitly keyed into the environment and play a dynamic role in governing posture and movement. Although the body-schema system can have specific effects on cognitive experience…it does not have the status of a conscious representation or belief”

Gallagher and Coles maintain that progress in understanding embodied cognition requires a distinction between this body schema and the notion of the body image (p.371):

“The body image consists of a complex set of intentional states-perceptions, mental representations, beliefs, and attitudes–in which the intentional object of such states is one’s own body. Thus the body image involves a reflective intentionality. Three modalities of this reflective intentionality are often distinguished in studies involving body image:

(a) the subject’s perceptual experience of his/her own body;

(b) the subject’s conceptual understanding (including mythical, cultural, and/or scientific knowledge) of the body in general; and

(c) the subject’s emotional attitude toward his/her own body”

Gallagher emphasizes the wide variety of ambiguous and contradictory ways these terms have been used, and while noting some critics have proposed that deploying new terms could eliminate such confusion, he labors to develop a dependable, standard use of the technical terminology that can serve to make sense of clinical neurophenomenology such as that of the patient I.W, who suffered damage to nerves below the neck. This man now has to consciously will in order to perform actions people normally take for granted (p. 374):

“Maintaining posture is, for him, an activity rather than an automatic process. His movement requires constant visual and mental concentration. In darkness he is unable to control movement; when he walks he cannot daydream, but must concentrate constantly on his movement. When he writes he has to concentrate on holding the pen and on his body posture. IW learned through trial and error the amount of force needed to pick up and hold an egg without breaking it. If his attention is directed toward a different task while holding an egg, his hand crushes the egg”

The usefulness of the crisp distinction between body schema and body image becomes apparent when trying to explain the patient’s body experience and body knowledge (though Gallagher states that there is not in fact such a simple distinction possible in many cases). Normal people can perform such acts without much explicit attention, which is to say such common actions are enabled by the subconscious processes characterizing the body schema. I.W, on the other hand, must carefully and consciously go through the necessary steps to perform everyday acts. Adopting Gallagher’s distinction, we could say in the absence of the unconscious body schema, the patient must now depend on his conscious body image. To the extent this distinction is true; it should help a great deal in unpacking the various meanings of body-knowledge.

symptom verbal reports and existential-physiological discrepancy

clinical neurophenomenology, interoception, introspection, medicine, symptom reports, visceral perception

While the anatomical basis of how nerve projections enable perception of the body is rather well known, physicians confront situations where patient verbal reporting about symptoms does not match models based on neurophysiological mechanisms. For instance, the Merck Manual Medical Library (2009) states:

“Painful stimuli from thoracic organs can produce discomfort      described as pressure, gas, burning, aching, and sometimes sharp pain. Because the sensation is visceral in origin, many patients deny they are having pain and insist it is merely discomfort”

The Mayo Clinic Heart Book (Gersh, 2000) describes the concept of uncomfortable feeling of thumping inside the chest known as palpitations, but does so from the point of view of patients (pg. 38):

“Although the apparent cause of the thumping in the chest would seem to be the heartbeat, this is not always the case. Some people have a normal heart rate during their palpitations. Presumably, they are either anxious or experiencing chest wall twitching that is mistaken for heartbeats”

Situations where the “folk physiological” (see Churchland, 1989, for a description of expert knowledge vs. folk beliefs) understanding of the body is apparently falsified by science can be labeled examples of existential-physiological discrepancy (Laughlin, McManus, D’Aquili, 1990). Mismatches between body-as-experienced compared to the “objective body” of scientific medicine and physiology (including the feeling of “phantom limbs” by amputees) are based on the idea that people may often have very limited “true” access to physiological processes. A more commonly presented variant or subset of this principle is the idea of “referred pain”, where the region causing understood to be causing the pain is spatially removed from the area where the patient senses it.

The Merck Manual (2009) gives an example: sometimes pain felt in one area of the body does not accurately represent where the problem is, because the pain is referred there from another area. Pain can be referred because signals from several areas of the body often travel through the same nerve pathways in the spinal cord and brain. For example, pain from a heart attack may be felt in the neck, jaws, arms, or abdomen. Pain from a gallbladder attack may be felt in the back of the shoulder.